scriptHelmholtz8bie.m

Behavior of error for eight B.I.E. for the Helmholtz equation
Prepared by: Andrea Carosso \& Francisco-Javier Sayas
Last modified: January 12, 2015

The goal of this script is testing errors for different boundary integral formulations of

$$
\Delta U+k^{2} U=0 \quad \text { in } \Omega_{+}, \quad \partial_{r} U-\imath k U=o\left(r^{-1 / 2}\right) \quad \text { as } r \rightarrow \infty
$$

with

$$
U=\beta_{0}=-U_{\mathrm{inc}} \quad \text { on } \Gamma, \quad \text { or } \quad \partial_{\nu} U=\beta_{1}=-\partial_{\nu} U_{\mathrm{inc}} \quad \text { on } \Gamma .
$$

Physical parameters, exact solution, geometry, and observation points. We will write everything in terms of the resolvent equation

$$
\Delta U-s^{2} U=0 \quad s=-\imath k
$$

The exact solution is

$$
\begin{aligned}
U(\mathbf{z}) & :=H_{0}^{(1)}\left(\imath s\left|\mathbf{z}-\mathbf{x}^{\mathrm{sc}}\right|\right) \\
U_{x}(\mathbf{z}) & :=-\imath s\left(z_{1}-x_{1}^{0}\right) H_{1}^{(1)}\left(\imath s\left|\mathbf{z}-\mathbf{x}^{\mathrm{sc}}\right|\right) \frac{1}{\left|\mathbf{z}-\mathbf{x}^{0}\right|} \\
U_{y}(\mathbf{z}) & :=-\imath s\left(z_{2}-x_{2}^{0}\right) H_{1}^{(1)}\left(\imath s\left|\mathbf{z}-\mathbf{x}^{\mathrm{sc}}\right|\right) \frac{1}{\left|\mathbf{z}-\mathbf{x}^{0}\right|} \\
\nabla U(\mathbf{z}) & :=\left(U_{x}(\mathbf{z}), U_{y}(\mathbf{z})\right)
\end{aligned}
$$

where $\mathbf{x}^{\text {sc }}:=(0.1,0.2)$ has to be in the interior of the domain. The incident wave

$$
U^{\mathrm{inc}}=-U,
$$

gives U as the exact solution of the exterior problem. The geometry is the union of the TV-shape (see deltaBEM documentation), which fits in a square $[-1.6,1.6]^{2}$, with the ellipse

$$
\left(x_{1}-4\right)^{2}+\frac{1}{4}\left(x_{2}-5\right)^{2}=1
$$

The solution will be observed in four exterior points:

$$
\mathrm{x}_{1}^{\mathrm{obs}}:=(0,4), \quad \mathrm{x}_{2}^{\mathrm{obs}}:=(4,0), \quad \mathrm{x}_{3}^{\mathrm{obs}}:=(-4,2), \quad \mathrm{x}_{4}^{\mathrm{obs}}:=(2,-4)
$$

Discretization. We will use $2 N$ points to discretize the TV-shape and N points to discretize the ellipse. The domains are sampled (three times $\varepsilon=0,-1 / 6,1 / 6$) and the discrete geometries are merged. Next we compute the elements of the Calderón Calculus,

$$
\mathrm{Q}, \quad \mathrm{M}, \quad \mathrm{~V}(s), \quad \mathrm{K}(s), \quad \mathrm{J}(s), \quad \mathrm{W}(s) .
$$

The four operators depend on s and are output as function handles. We next sample the incident wave (see Chapter 3 of the deltaBEM documentation)

$$
\boldsymbol{\beta}_{0}, \quad \boldsymbol{\beta}_{1}
$$

Finally we create the single and double layer potentials

$$
\mathrm{S}(s), \quad \mathrm{D}(s)
$$

at the observation points.
Integral formulations. Non-physical densities will be denoted $\boldsymbol{\eta}$ for the S.L. potential and $\boldsymbol{\psi}$ for the D.L. potential. The effective density for the D.L. potential (the one that appears in potential expressions, but not on integral equations) is $\mathrm{Q} \psi$. The approximation for the exterior trace and normal derivatives will be $\boldsymbol{\phi}$ and $\boldsymbol{\lambda}$ respectively. The effective approximation of the exterior trace (appearing in potential expressions, and also as the final approximation of the exterior trace) will be $\varphi=\mathrm{Q} \phi$.

1. (iD01 - Dirichlet problem - indirect formulation)

$$
\mathrm{V}(s) \boldsymbol{\eta}=\boldsymbol{\beta}_{0}, \quad \mathrm{M} \boldsymbol{\lambda}=-\frac{1}{2} \mathrm{M} \boldsymbol{\eta}+\mathrm{J}(s) \boldsymbol{\eta}, \quad U_{h}=\mathrm{S}(s) \boldsymbol{\eta}, \quad \mathrm{M} \boldsymbol{\phi}=\boldsymbol{\beta}_{0}, \quad \boldsymbol{\varphi}=\mathrm{Q} \boldsymbol{\phi}
$$

2. (iD02 - Dirichlet problem - indirect formulation)

$$
\frac{1}{2} \mathrm{M} \boldsymbol{\psi}+\mathrm{K}(s) \boldsymbol{\psi}=\boldsymbol{\beta}_{0}, \quad \mathrm{M} \boldsymbol{\lambda}=-\mathrm{W}(s) \boldsymbol{\psi}, \quad U_{h}=\mathrm{D}(s) \mathrm{Q} \boldsymbol{\psi}, \quad \mathrm{M} \boldsymbol{\phi}=\boldsymbol{\beta}_{0}, \quad \boldsymbol{\varphi}=\mathrm{Q} \boldsymbol{\phi}
$$

3. (dD01 - Dirichlet problem - direct formulation)

$$
\mathrm{V}(s) \boldsymbol{\lambda}=-\frac{1}{2} \mathrm{M} \boldsymbol{\phi}+\mathrm{K}(s) \boldsymbol{\phi}, \quad U_{h}=\mathrm{D}(s) \mathrm{Q} \boldsymbol{\phi}-\mathrm{S}(s) \boldsymbol{\lambda}, \quad \mathrm{M} \boldsymbol{\phi}=\boldsymbol{\beta}_{0}, \quad \boldsymbol{\varphi}=\mathrm{Q} \boldsymbol{\phi}
$$

4. (dD02 - Dirichlet problem - direct formulation)

$$
\frac{1}{2} \mathrm{M} \boldsymbol{\lambda}+\mathrm{J}(s) \boldsymbol{\lambda}=-\mathrm{W}(s) \boldsymbol{\phi}, \quad U_{h}=\mathrm{DQ} \boldsymbol{\phi}-\mathrm{S}(s) \boldsymbol{\lambda}, \quad \mathrm{M} \boldsymbol{\phi}=\boldsymbol{\beta}_{0}, \quad \boldsymbol{\varphi}=\mathrm{Q} \boldsymbol{\phi}
$$

5. (iN01 - Neumann problem - indirect formulation)

$$
-\frac{1}{2} \mathrm{M} \boldsymbol{\eta}+\mathrm{J}(s) \boldsymbol{\eta}=\boldsymbol{\beta}_{1}, \quad \mathrm{M} \boldsymbol{\phi}=\mathrm{V}(s) \boldsymbol{\eta}, \quad U_{h}=\mathrm{S}(s) \boldsymbol{\eta}, \quad \mathrm{M} \boldsymbol{\lambda}=\boldsymbol{\beta}_{1}, \quad \boldsymbol{\varphi}=\mathrm{Q} \boldsymbol{\phi}
$$

6. (iN02 - Neumann problem - indirect formulation)

$$
\mathrm{W}(s) \boldsymbol{\psi}=-\boldsymbol{\beta}_{1}, \quad \mathrm{M} \phi=\frac{1}{2} \mathrm{M} \boldsymbol{\psi}+\mathrm{K}(s) \boldsymbol{\psi}, \quad U_{h}=\mathrm{D}(s) \mathrm{Q} \boldsymbol{\psi}, \quad \mathrm{M} \boldsymbol{\lambda}=\boldsymbol{\beta}_{1}, \quad \boldsymbol{\varphi}=\mathrm{Q} \boldsymbol{\phi}
$$

7. (dN01 - Neumann problem - direct formulation)

$$
-\frac{1}{2} \mathrm{M} \boldsymbol{\phi}+\mathrm{K}(s) \boldsymbol{\phi}=\mathrm{V}(s) \boldsymbol{\lambda}, \quad U_{h}=\mathrm{D}(s) \mathrm{Q} \boldsymbol{\phi}-\mathrm{S}(s) \boldsymbol{\lambda}, \quad \mathrm{M} \boldsymbol{\lambda}=\boldsymbol{\beta}_{1}, \quad \boldsymbol{\varphi}=\mathrm{Q} \boldsymbol{\phi}
$$

8. (dN02 - Neumann problem - direct formulation)

$$
\mathrm{W}(s) \boldsymbol{\phi}=-\frac{1}{2} \mathrm{M} \boldsymbol{\lambda}-\mathrm{J}(s) \boldsymbol{\lambda}, \quad U_{h}=\mathrm{D}(s) \mathrm{Q} \boldsymbol{\phi}-\mathrm{S}(s) \boldsymbol{\lambda}, \quad \mathrm{M} \boldsymbol{\lambda}=\boldsymbol{\beta}_{1}, \quad \boldsymbol{\varphi}=\mathrm{Q} \boldsymbol{\phi}
$$

Computation of errors. In all the formulations we will have approximations

$$
U_{h}\left(\mathbf{x}_{i}^{\mathrm{obs}}\right) \approx U\left(\mathbf{x}_{i}^{\mathrm{obs}}\right), \quad i=1, \ldots, 4, \quad \varphi_{j} \approx U\left(\mathbf{m}_{i}\right)=: \beta_{0, i}^{\mathrm{ex}}, \quad \lambda_{j} \approx \nabla U\left(\mathbf{m}_{i}\right) \cdot \mathbf{n}_{i}=: \beta_{1, i}^{\mathrm{ex}} .
$$

Note that $\left|\mathbf{n}_{i}\right|=\mathcal{O}\left(N^{-1}\right)$. We then compute errors:

$$
\begin{aligned}
e_{\text {Pot }} & :=\max \left|U_{h}\left(\mathbf{x}_{i}^{\mathrm{obs}}\right)-U\left(\mathrm{x}_{i}^{\mathrm{obs}}\right)\right|=\mathcal{O}\left(N^{-3}\right), \\
e_{\lambda} & :=N \max \left|\lambda_{i}-\beta_{1, i}^{\mathrm{ex}}\right|=\mathcal{O}\left(N^{-3}\right) \\
e_{\varphi} & :=\max \left|\varphi_{i}-\beta_{0, i}^{\mathrm{ex}}\right|=\mathcal{O}\left(N^{-3}\right)
\end{aligned}
$$

The errors are output as a row vector (in the given order).
There are two different modes to run this script:

- If a variable external HAS NOT been defined, the script requests the user to input: k, N, the experiment number (1 to 8) and whether the fork will be used or not.
- If the variable external has been defined, these data need to have been declared in advance. In this case, the errors are appended as an additional row to a matrix of errors.

