scriptLaplace2bie.m
Behavior of error for two B.I.E. for the Laplace equation
Prepared by: Andrea Carosso \& Francisco-Javier Sayas
Last modified: January 12, 2015

The goal of this script is testing errors for different boundary integral formulations of

$$
\Delta u=0 \quad \text { in } \Omega_{+}, \quad u=u_{\infty}+o\left(r^{-1}\right) \quad \text { as } r \rightarrow \infty
$$

with

$$
u=\beta_{0} \quad \text { on } \Gamma, \quad \text { or } \quad \partial_{\nu} u=\beta_{1} \quad \text { on } \Gamma .
$$

Exact solution, geometry, and observation points. The exact solution is

$$
\begin{aligned}
u(\mathbf{z}) & :=\frac{z_{1}}{|\mathbf{z}|^{2}} \\
u_{x}(\mathbf{z}) & :=\frac{1}{|\mathbf{z}|^{2}}-\frac{2 z_{1}^{2}}{|\mathbf{z}|^{4}} \\
u_{y}(\mathbf{z}) & :=\frac{1}{|\mathbf{z}|^{2}}-\frac{2 z_{2}^{2}}{|\mathbf{z}|^{4}} \\
\nabla u(\mathbf{z}) & :=\left(u_{x}(\mathbf{z}), u_{y}(\mathbf{z})\right)
\end{aligned}
$$

The geometry is the union of the TV-shape (see deltaBEM documentation), which fits in a square $[-1.6,1.6]^{2}$, with the ellipse

$$
\left(x_{1}-4\right)^{2}+\frac{1}{4}\left(x_{2}-5\right)^{2}=1
$$

The solution will be observed at four exterior points:

$$
\mathbf{x}_{1}^{\mathrm{obs}}:=(0,4), \quad \mathbf{x}_{2}^{\mathrm{obs}}:=(4,0), \quad \mathbf{x}_{3}^{\mathrm{obs}}:=(-4,2), \quad \mathbf{x}_{4}^{\mathrm{obs}}:=(2,-4)
$$

Discretization. We will use $2 N$ points to discretize the TV-shape and N points to discretize the ellipse. The domains are sampled three times $\varepsilon=0,-1 / 6,1 / 6$ and the discrete geometries are merged. Next we compute the elements of the Calderón Calculus,

$$
\mathrm{Q}, \quad \mathrm{M}, \quad \mathrm{~V}, \quad \mathrm{~K}, \quad \mathrm{~J}, \quad \mathrm{~W}, \quad \mathrm{C} .
$$

We next sample the exact solution on the boundary,

$$
\beta_{0}, \quad \beta_{1} .
$$

Finally, we create the single and double layer potentials

$$
S, \quad D
$$

at the observation points.

Integral formulations. Non-physical densities will be denoted $\boldsymbol{\eta}$ for the S.L. potential and $\boldsymbol{\psi}$ for the D.L. potential. The effective density for the D.L. potential (the one that appears in potential expressions, but not on integral equations) is $\mathrm{Q} \psi$. The approximation for the exterior trace and normal derivatives will be $\boldsymbol{\phi}$ and $\boldsymbol{\lambda}$ respectively. The effective approximation of the exterior trace (appearing in potential expressions, and also as the final approximation of the exterior trace) will be $\varphi=\mathrm{Q} \phi$.

1. (iD01 - Dirichlet problem - indirect formulation)

$$
\left(\begin{array}{cc}
\mathrm{V} & \boldsymbol{1} \\
\mathbf{1}^{T} & 0
\end{array}\right) \boldsymbol{\eta}=\boldsymbol{\beta}_{0}, \quad \mathrm{M} \boldsymbol{\lambda}=-\frac{1}{2} \mathrm{M} \boldsymbol{\eta}+\boldsymbol{\eta}, \quad u_{h}=\mathrm{S} \boldsymbol{\eta}, \quad \mathrm{M} \boldsymbol{\phi}=\boldsymbol{\beta}_{0}, \quad \boldsymbol{\varphi}=\mathrm{Q} \boldsymbol{\phi}
$$

2. (iN02 - Neumann problem - indirect formulation)

$$
\mathrm{W} \boldsymbol{\psi}+\mathrm{C} \boldsymbol{\psi}=-\boldsymbol{\beta}_{1}, \quad \mathrm{M} \phi=\frac{1}{2} \mathrm{M} \boldsymbol{\psi}+\mathrm{K} \boldsymbol{\psi}, \quad u_{h}=\mathrm{DQ} \boldsymbol{\psi}, \quad \mathrm{M} \boldsymbol{\lambda}=\boldsymbol{\beta}_{1}, \quad \boldsymbol{\varphi}=\mathrm{Q} \phi
$$

Computation of errors. In all the formulations we will have approximations

$$
u_{h}\left(\mathbf{x}_{i}^{\mathrm{obs}}\right) \approx u\left(\mathbf{x}_{i}^{\mathrm{obs}}\right), \quad i=1, \ldots, 4, \quad \varphi_{j} \approx u\left(\mathbf{m}_{i}\right)=: \beta_{0, i}^{\mathrm{ex}}, \quad \lambda_{j} \approx \nabla u\left(\mathbf{m}_{i}\right) \cdot \mathbf{n}_{i}=: \beta_{1, i}^{\mathrm{ex}} .
$$

Note that $\left|\mathbf{n}_{i}\right|=\mathcal{O}\left(N^{-1}\right)$. We then compute errors:

$$
\begin{aligned}
e_{\text {Pot }} & :=\max \left|u_{h}\left(\mathrm{x}_{i}^{\mathrm{obs}}\right)-u\left(\mathbf{x}_{i}^{\mathrm{obs}}\right)\right|=\mathcal{O}\left(N^{-3}\right), \\
e_{\lambda} & :=N \max \left|\lambda_{i}-\beta_{1, i}^{\mathrm{ex}}\right|=\mathcal{O}\left(N^{-3}\right) . \\
e_{\varphi} & :=\max \left|\varphi_{i}-\beta_{0, i}^{\mathrm{ex}}\right|=\mathcal{O}\left(N^{-3}\right),
\end{aligned}
$$

The errors are output as a row vector (in the given order).

There are two different modes to run this script. If a variable external HAS NOT been defined, the script requests the user to input: N, the experiment number (1 or 2) and whether the fork will be used or not. If the variable external has been defined, these data need to have been declared in advance. In this case, the errors are appended as an additional row to a matrix of errors.

