scriptMixedBVP.m

Scattering from two obstacles with different boundary conditions.
Prepared by: Andrea Carosso \& Francisco-Javier Sayas
Last modified: January 12, 2015

The goal of this script is to simulate scattering from two obstacles, one with a Dirichlet boundary condition, the other with a Neumann boundary condition, and to then plot the solution and compute the errors. We solve the problem

$$
\Delta U+k^{2} U=0 \quad \text { in } \Omega_{+}, \quad \partial_{r} U-\imath k U=o\left(r^{-1 / 2}\right) \quad \text { as } r \rightarrow \infty,
$$

where $\Gamma=\Gamma_{1} \cup \Gamma_{2}$, with boundary conditions

$$
U=\beta_{0}=-U_{\mathrm{inc}} \quad \text { on } \Gamma_{1}, \quad \text { and } \quad \partial_{\nu} U=\beta_{1}=-\partial_{\nu} U_{\mathrm{inc}} \quad \text { on } \Gamma_{2}
$$

Physical parameters, exact solution, and geometries We set $k=10$ and write everything in terms of the resolvent equation

$$
\Delta U-s^{2} U=0 \quad \text { in } \Omega_{+}, \quad s=-\iota k
$$

The exact solution is an exterior radiating solution given by

$$
\begin{aligned}
U(\mathbf{z}) & :=H_{0}^{(1)}\left(\iota s\left|\mathbf{z}-\mathbf{x}^{s c}\right|\right) \\
U_{x}(\mathbf{z}) & :=-H_{1}^{(1)}\left(\iota s\left|\mathbf{z}-\mathbf{x}^{s c}\right|\right) \frac{z_{1}-x_{1}^{s c}}{\mid \mathbf{z}-\mathbf{x}^{s c \mid}} \\
U_{y}(\mathbf{z}) & :=-H_{1}^{(1)}\left(\iota s\left|\mathbf{z}-\mathbf{x}^{s c}\right|\right) \frac{z_{2}-x_{2}^{s c}}{\left|\mathbf{z}-\mathbf{x}^{s c \mid}\right|} \\
\nabla U(\mathbf{z}) & :=\left(U_{x}(\mathbf{z}), U_{y}(\mathbf{z})\right),
\end{aligned}
$$

where $H_{m}^{(n)}(\iota s r)$ is a hankel function of the $n^{\text {th }}$ kind of order m, and $\mathbf{x}^{s c}:=(0.1,0.2)$ is inside one of the geometries (Γ_{2} in this case). The geometry is the union of an ellipse (Γ_{1})

$$
(5 x / 6)^{2}+y^{2}=1
$$

with a kite-shape $\left(\Gamma_{2}\right)$, all of which fits inside the rectangle $[-1,4.5] \times[-1.2,1.2]$. The solution will be observed at three exterior points:

$$
\mathbf{x}_{1}^{\mathrm{obs}}:=(1.5,0), \quad \mathrm{x}_{2}^{\mathrm{obs}}:=(-1,0), \quad \mathbf{x}_{3}^{\mathrm{obs}}:=(1,-1)
$$

Discretization and restriction matrices We will use $N=60$ points to discretize each geometry. The domains are sampled (three times $\varepsilon=0,-1 / 6,1 / 6$) and the discrete geometries are merged. The function selectComponents is used to produce two $1 \times N$ arrays
g1indices, g2indices
which contain the indices in the merged geometry corresponding to each respective geometry, along with two $N \times 2 N$ restriction matrices

$$
\mathrm{R}_{1}, \quad \mathrm{R}_{2}
$$

which, when multiplied on the right by a $2 N \times 2$ array containing all the midpoints, for example, yield a $N \times 2$ array of the midpoints of only one of the geometries. The elements of the Calderón Calculus are then computed

$$
\mathrm{V}_{1}(s), \quad \mathrm{W}_{2}(s), \quad \mathrm{Q}_{2}, \quad \mathrm{~K}(s), \quad \mathrm{J}(s)
$$

where $\mathrm{V}_{1}(s), \mathrm{W}_{2}(s)$ are $N \times N$ matrix operators exclusively on Γ_{1}, Γ_{2} respectively, while $\mathrm{K}(s), \mathrm{J}(s)$ are $2 N \times 2 N$ matrix operators on Γ. The four operators depend on s and are output as function handles. If the field g1.parity exists for the first geometry then the parity matrix g 1 . parity is added to $\mathrm{V}_{1}(s)$, while if the field g 2 . parity exists then the absolute value of the parity matrix, $\mid \mathrm{g} 2$.indices \mid is added to $\mathrm{W}_{2}(s)$. We next sample the incident wave (see Chapter 3 of the deltaBEM documentation)

$$
\boldsymbol{\beta}_{0}, \quad \boldsymbol{\beta}_{1}
$$

on the two boundaries. Finally we create the single and double layer potentials

$$
\mathrm{S}_{1}(s), \quad \mathrm{D}_{2}(s)
$$

at the observation points, with $\mathrm{S}_{1}(s)$ made from the first geometry and $\mathrm{D}_{2}(s)$ made from the second geometry.

Integral formulation and error The approximation for the exterior trace and normal derivatives will be $\boldsymbol{\phi}_{2}$ and $\boldsymbol{\lambda}_{1}$ respectively. The effective approximation of the exterior trace (appearing in potential expressions, and also as the final approximation of the exterior trace) will be $\mathrm{Q}_{2} \boldsymbol{\phi}_{2}$. The discrete integral equations are then given in matrix form by

$$
\left[\begin{array}{cc}
\mathrm{V}_{1}(s) & \mathrm{R}_{1} \mathrm{~K}(s) \mathrm{R}_{2}^{\top} \\
\mathrm{R}_{2} \mathrm{~J}(s) \mathrm{R}_{1}^{\top} & -\mathrm{W}_{2}(s)
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\lambda}_{1} \\
\boldsymbol{\phi}_{2}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\beta}_{0} \\
\boldsymbol{\beta}_{1}
\end{array}\right]
$$

We then compute the approximate potential at the observation points

$$
U_{\mathrm{scat}}=\mathrm{S}_{1}(s) \boldsymbol{\lambda}_{1}+\mathrm{D}_{2}(s) \mathrm{Q}_{2} \boldsymbol{\phi}_{2}
$$

and the error is computed:

$$
e_{\mathrm{U}}:=\max \left|U_{\mathrm{scat}}-U\left(\mathbf{x}^{\mathrm{obs}}\right)\right| .
$$

Plot If the user desires a plot of the solution then the value yes $=1$ is input. A triangulation \mathcal{T} is produced in the box $[-2,5] \times[-1.5,1.5]$ and the single-layer and doublelayer potentials are computed on the triangulation using their respective geometries, Γ_{1} and Γ_{2}. A plot of the potential is then generated on the triangulation.

