scriptMixedBVP.m

Scattering from two obstacles with different boundary conditions. Prepared by: Andrea Carosso & Francisco-Javier Sayas Last modified: January 12, 2015

The goal of this script is to simulate scattering from two obstacles, one with a Dirichlet boundary condition, the other with a Neumann boundary condition, and to then plot the solution and compute the errors. We solve the problem

$$\Delta U + k^2 U = 0$$
 in Ω_+ , $\partial_r U - \imath k U = o(r^{-1/2})$ as $r \to \infty$,

where $\Gamma = \Gamma_1 \cup \Gamma_2$, with boundary conditions

$$U = \beta_0 = -U_{\text{inc}}$$
 on Γ_1 , and $\partial_{\nu}U = \beta_1 = -\partial_{\nu}U_{\text{inc}}$ on Γ_2 .

Physical parameters, exact solution, and geometries We set k = 10 and write everything in terms of the resolvent equation

$$\Delta U - s^2 U = 0 \qquad \text{in } \Omega_+, \qquad s = -\iota k.$$

The exact solution is an exterior radiating solution given by

$$U(\mathbf{z}) := H_0^{(1)}(\iota s | \mathbf{z} - \mathbf{x}^{sc} |)$$

$$U_x(\mathbf{z}) := -H_1^{(1)}(\iota s | \mathbf{z} - \mathbf{x}^{sc} |) \frac{z_1 - x_1^{sc}}{|\mathbf{z} - \mathbf{x}^{sc}|}$$

$$U_y(\mathbf{z}) := -H_1^{(1)}(\iota s | \mathbf{z} - \mathbf{x}^{sc} |) \frac{z_2 - x_2^{sc}}{|\mathbf{z} - \mathbf{x}^{sc}|}$$

$$\nabla U(\mathbf{z}) := (U_x(\mathbf{z}), U_y(\mathbf{z})),$$

where $H_m^{(n)}(\iota sr)$ is a hankel function of the n^{th} kind of order m, and $\mathbf{x}^{sc} := (0.1, 0.2)$ is inside one of the geometries (Γ_2 in this case). The geometry is the union of an ellipse (Γ_1)

$$(5x/6)^2 + y^2 = 1$$

with a kite-shape (Γ_2) , all of which fits inside the rectangle $[-1, 4.5] \times [-1.2, 1.2]$. The solution will be observed at three exterior points:

$$\mathbf{x}_1^{\text{obs}} := (1.5, 0), \quad \mathbf{x}_2^{\text{obs}} := (-1, 0), \quad \mathbf{x}_3^{\text{obs}} := (1, -1).$$

Discretization and restriction matrices We will use N = 60 points to discretize each geometry. The domains are sampled (three times $\varepsilon = 0, -1/6, 1/6$) and the discrete geometries are merged. The function selectComponents is used to produce two $1 \times N$ arrays

glindices, g2indices

which contain the indices in the merged geometry corresponding to each respective geometry, along with two $N \times 2N$ restriction matrices

$$R_1, R_2$$

which, when multiplied on the right by a $2N \times 2$ array containing all the midpoints, for example, yield a $N \times 2$ array of the midpoints of only one of the geometries. The elements of the Calderón Calculus are then computed

$$V_1(s), \quad W_2(s), \quad Q_2, \quad K(s), \quad J(s),$$

where $V_1(s)$, $W_2(s)$ are $N \times N$ matrix operators exclusively on Γ_1 , Γ_2 respectively, while K(s), J(s) are $2N \times 2N$ matrix operators on Γ . The four operators depend on s and are output as function handles. If the field g1.parity exists for the first geometry then the parity matrix g1.parity is added to $V_1(s)$, while if the field g2.parity exists then the absolute value of the parity matrix, |g2.indices| is added to $W_2(s)$. We next sample the incident wave (see Chapter 3 of the deltaBEM documentation)

$$\boldsymbol{\beta}_0, \qquad \boldsymbol{\beta}_1$$

on the two boundaries. Finally we create the single and double layer potentials

$$S_1(s), \quad D_2(s)$$

at the observation points, with $S_1(s)$ made from the first geometry and $D_2(s)$ made from the second geometry.

Integral formulation and error The approximation for the exterior trace and normal derivatives will be ϕ_2 and λ_1 respectively. The effective approximation of the exterior trace (appearing in potential expressions, and also as the final approximation of the exterior trace) will be $Q_2\phi_2$. The discrete integral equations are then given in matrix form by

$$\begin{bmatrix} \mathbf{V}_1(s) & \mathbf{R}_1\mathbf{K}(s)\mathbf{R}_2^\top \\ \mathbf{R}_2\mathbf{J}(s)\mathbf{R}_1^\top & -\mathbf{W}_2(s) \end{bmatrix} \begin{bmatrix} \boldsymbol{\lambda}_1 \\ \boldsymbol{\phi}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{\beta}_0 \\ \boldsymbol{\beta}_1 \end{bmatrix}.$$

We then compute the approximate potential at the observation points

$$U_{\text{scat}} = S_1(s)\boldsymbol{\lambda}_1 + D_2(s)Q_2\boldsymbol{\phi}_2,$$

and the error is computed:

$$e_{\mathrm{U}} := \max |U_{\mathrm{scat}} - U(\mathbf{x}^{\mathrm{obs}})|.$$

Plot If the user desires a plot of the solution then the value yes = 1 is input. A triangulation \mathcal{T} is produced in the box $[-2, 5] \times [-1.5, 1.5]$ and the single-layer and double-layer potentials are computed on the triangulation using their respective geometries, Γ_1 and Γ_2 . A plot of the potential is then generated on the triangulation.