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The problem. The goal of this script is to exemplify the use of deltaBEM to simulate
elastic wave scattering. A direct approach, based on the second boundary integral identity,
is used to solve both Dirichlet and Neumann problems. The scattered wave field u satisfies
the equations

∇ · σ(u) + k2ρu = 0 in Ω+ := R2 \ Ω−

with a (Dirichlet or Neumann) boundary condition

γu + β0 = 0 or σ(u)n = 0 on Γ := ∂Ω+,

taken from a given incident displacement or stress field:

β0 := γuinc, β1 := σ(uinc)n.

The solution also satisfies the Kupradze radiation conditions at infinity. Following the way
of writing the equations in the deltaBEM Calderón Calculus, we will write the equation
as

∇ · σ(u)− s2ρu = 0 with s = −ık.

The domain is exterior to the disjoint union of three disks

Ω− := B((1, 1), 1) ∪B((3, 3), 1) ∪B((3.5, 0.4), 1),

and the stress tensor is given by Hooke’s law

σ(u) = µ(∇u +∇u>) + λ(∇ · u) I.

For the example we consider the physical parameters:

k = 3 s := −ık, ρ = 50, λ = 5, µ = 3.

The incident wave is a plane pressure elastic wave

uinc(z) := exp(− s
cL
d · z), d := (1, 0), cL :=

√
λ+2µ
ρ
.

The scattered displacement field can be written in terms of its Cauchy data

u = D(s)φ− S(s)λ, φ := γu, λ := σ(u)n.
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The boundary identity
1
2
λ = −W(s)φ− J (s)λ

will be used as the integral equation. In the case of the Dirichlet problem, we will solve

φ = −β0, (1
2

+ J (s))λ = −W(s)φ,

whereas for the Neumann problem, we will solve

λ = −β1, W(s)φ = −(1
2

+ J (s))λ.

Discretization. We will use Np = N = 300 points on each of the circular scatterers.
Note that the siaze of the systems will be 6N × 6N , since we have three obstacles and
two components of the displacement or normal stress fields. The geometric sampling is
carried out next. The main and the two companion grids are sampled and then merged
in the lines

[g1,g1p,g1m]=sample(@ellipse,NP,[1 1],[1 1]);
[g2,g2p,g2m]=sample(@ellipse,NP,[1 1],[3 3]);
[g3,g3p,g3m]=sample(@ellipse,NP,[1 1],[3.5 .4]);
[g,gp,gm]=merge({g1,g2,g3},{g1p,g2p,g3p},{g1m,g2m,g3m});

The exterior displacement field will be evaluated on the vertices of a triangulation, inside
the box [−1, 5.5]× [−1.5, 5] and outside the obstacles Ω−. This triangulation is produced
with the following lines of code

Box=[−1 5.5 5 −1.5];
h = 0.075; % Mesh diameter
[X,Y,T]=triangulateGeometry(Box,g,0.015,0.015,h,0);
T=T(:,1:3);

To avoid recomputing the triangulation for the same geometric configuration, when-
ever the physical parameters are changed, the triangulation is stored in a file. The first
lines of the script use the variable newexample to decide whether the triangulation
is produced or read from a file, and nameoffile to give the name (and path) of the
mesh file.

The next step in the discretization consists of the sampling of the incident fields and the
construction of the potentials and integral operators. The matrices Q and M for the scalar
Calderón Calculus have to be used to build block diagonal counterparts Q = diag(Q,Q)
and M = diag(M,M):

[Q,M] = CalderonCalculusMatrices(g,1); % the fork option is activated
O = zeros(size(M));
Q = [Q O; O Q];
M = [M O; O M];
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The operators J (s) and W(s) are next produced, and the two components of the trace
(and the normal traction) of the incident field) are sampled

[b0x,b1x] = CalderonCalculusTest(...
u1,@(x1,x2) [sig11(x1,x2) sig12(x1,x2)],gp,gm,1);

[b0y,b1y] = CalderonCalculusTest(...
u2,@(x1,x2) [sig12(x1,x2) sig22(x1,x2)],gp,gm,1);

beta0 = [b0x;b0y]; % Trace of the displacement (for Dirichlet problem)
beta1 = [b1x;b1y]; % Normal traction (for Neumann problem)

Here u1 and u2 are the components of the incident displacement field, and sig11, sig12,
sig22 are the entries of the stress tensor corresponding to that field.

Discrete integral formulations. For the Dirichlet problem, we solve

Mφ = −β0, (1
2
M + J(s))λ = −W(s)φ,

while for the Neumann problem, we solve

Mλ = −β1, W(s)φ = −(1
2
M + J(s))λ.

The potential postprocessing is identical in both cases:

u = D(s)Qφ− S(s)λ.

For the graphs, the incident displacement field is evaluated at the vertices of the triangu-
lation and then added to the scattered field utot := u + uinc.

Some reminders. The way the Calderón Calculus is designed, there are some simple
rules to be kept in mind.

• The samples of the incident wave and its normal stress on the boundary of the
scatterers are considered observations and not discrete functions. They cannot,
therefore, be the input of integral operators. This is the reason for the equations
of the form φ = −β0 that have to be discretized with the approximation of the
identity operator Mφ = −β0.

• Note also that the approximation of the trace φ is not the input of the discrete
double layer potential: instead, the effective density is Qφ. This is common to the
Calderón Calculus for all operators: quantities in H1/2 spaces are always affected
by the quadrature matrix Q; in the case of the integral operators, the matrix is part
of the integral operator.
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