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Presentation

This is yet another instance of the beginning of a book I’ll never find the time to finish.
Instead, you’ll find here some basic lectures, at an elementary level,, about boundary
integral equations and boundary element methods.
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Chapter 1

The single layer potential for the
Laplacian

chap:1

1.1 Exterior solutions of the Laplace equation

We consider the following geometric set-up. A bounded domain Ω− ⊂ Rd, with d = 2
or d = 3, is assumed to be on one side of its boundary Γ. Often, the domain of interest
will be Ω+ := Rd\Ω−, and will be referred to as the exterior domain. The unit normal
vector field ν : Γ→ Rd is well defined (almost everywhere) and assumed to point from
Ω− to Ω+.

With respect to the boundary, the farther we will go from the point of view of regularity is
Lipschitz regularity (see Section 1.5 below), but it will help the reader to place themselves
in one of these extreme situations:

• Γ is a closed simple polygon in the plane or a closed polyhedron in the space that
is locally representable as a graph.

• Γ is locally the graph of a C∞ function.

Many interesting situations fall in-between. We will make an effort in exploring domains
in their due generality, as we approach the more theoretical chapters of this book.

Most of this book is going to be focused on exterior solutions of boundary value
problems. We start by focusing on the Laplace equation

∆u = 0 in Ω+. (1.1)

At this point we are not going to worry about smoothness of the solution or of the
boundary. Smoothness of solution will be a given, as we will see later in the book, and
the boundary might have different kinds of regularity. A boundary condition will be given
on Γ, typically, a Dirichlet condition

u = β0 on Γ, (1.2)
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or a Neumann condition
∂νu := ∇u · ν = β1 on Γ. (1.3)

The problem is not complete without a certain kind of condition at infinity. At this
moment, we are going to deal with the asymptotic behavior at infinity in full generality.
In the two dimensional case, we assume that

u(z) = a log |z|+ b+
c · z
|z|2

+O(|z|−2) as |z| → ∞. (1.4) eq:1.4

The scalar quantities a and b, and the vector c might be given or not. The Landau symbol
is used as follows:

f(z) = O(|z|−m) as |z| → ∞
means that there exist C,R > 0 such that

|f(z)| ≤ C|z|−m ∀z s.t. |z| ≥ R.

In the three dimensional case, we will consider the following type of asymptotic behavior

u(z) =
a

|z|
+

b · z
|z|3

+O(|z|−3) as |z| → ∞. (1.5) eq:1.5

Asymptotic conditions at infinity, imposed to solutions of boundary value problems, are
often called radiation conditions for reasons that will be clear when we start exploring
equations related to wave propagation.

Some functional notation. Even for readers who are not fully acquainted with inte-
gration theory, it will be useful to adopt the classical notation of Lebesgue spaces. On a
domain Ω ⊂ Rd (bounded or not), we consider the spaces

L1(Ω) :={u : Ω→ R :

∫
Ω

|u| <∞}, (1.6a) eq:1.5a

L2(Ω) :={u : Ω→ R :

∫
Ω

|u|2 <∞}, (1.6b) eq:1.5b

and
L∞(Ω) := {u : Ω→ R : |u| bounded}. (1.6c) eq:1.5c

Some further precision is needed. The integral in (1.6a) and (1.6b) is a Lebesgue integral.
The Lebesgue measure will not be displayed unless we explicitly show the variable in the
function. Functions that are equal almost everywhere (except in set of zero measure) are
considered to be the same function. If the reader is not acquainted with these concepts,
there are simple intuitive introductions to measure and integration in the literature. We
will not attemp them here. In (1.6c), boundedness has to be understood as the existence
of a constant such that |u| ≤ C almost everywhere, i.e., except in a set of zero measure.
Once again, functions that differ on sets of measure zero are considered to be the same
function. When we are working on the boundary Γ, we will use a Lebesgue measure in
d− 1 dimensions mapped on the boundary (this is particularly easy to understand in the
case of polygonal boundaries), in order to define the spaces L1(Γ) and L2(Γ). The space
L∞(Γ) is similarly defined.
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1.2 The single layer potential in three dimensions
sec:1.2

Let η : Γ→ R be a given function defined on the boundary Γ. We then define the single
layer potential Sη : R3 \ Γ→ R with the formula:

(Sη)(z) :=

∫
Γ

η(y)

4π|z− y|
dΓ(y).

In this context, the input function η will be called a density. Several simple properties
are next listed. Their proofs are proposed in the exercise list. If η ∈ L1(Γ) and u = Sη,
then u ∈ C∞(R3 \ Γ), and

∆u = 0 in R3 \ Γ, (1.7a)

u(z) = a
1

|z|
+O(|z|−2) as |z| → ∞. (1.7b)

where a = 1
4π

∫
Γ
η dΓ. It takes quite some more work to prove the following estimates.

On smooth points of the boundary, that is, on points x ∈ Γ on which there is a tangent
plane, and for smooth enough density η, we haveeq:1.8

(γ+u)(x) := lim
Ω+3z→x

u(x) =

∫
Γ

η(y)

4π|x− y|
dΓ(y), (1.8a)

(γ−u)(x) := lim
Ω−3z→x

u(x) =

∫
Γ

η(y)

4π|x− y|
dΓ(y), (1.8b)

(∂+
ν u)(x) := lim

Ω+3z→x
∇u(x) · ν(x) = −1

2
η(x) +

∫
Γ

(y − x) · ν(x)

4π|x− y|3
η(y)dΓ(y), (1.8c)

(∂−ν u)(x) := lim
Ω−3z→x

∇u(x) · ν(x) =
1

2
η(x) +

∫
Γ

(y − x) · ν(x)

4π|x− y|3
η(y)dΓ(y). (1.8d)

This shows that the single layer potential is continuous across the surface from where it
is generated, but that its gradient is discontinuous in the normal direction, with a jump
discontinuity equal to the density. We have used the symbols γ± to denote restrictions
to the boundary from Ω±. These will be the precise symbols for trace operators that we
will use when we get to be theoretically precise. We have also adopted the quite usual
symbols ∂±ν for normal derivatives from both sides of Γ.

Smooth points on the boundary include all points that are not on edges in the case of
polyhedral boundaries. All points are smooth on smooth surfaces.

Two boundary integral operators. It is quite convenient to have separate symbols
for the two integral expressions in the righ-hand-sides of (1.8): for an arbitrary density η
and for points x ∈ Γ, we define
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eq:1.9

(Vη)(x) :=

∫
Γ

η(y)

4π|x− y|
dΓ(y), (1.9a)

(Ktη)(x) :=

∫
Γ

(y − x) · ν(x)

4π|x− y|3
η(y)dΓ(y). (1.9b)

Note that Sη and Vη share the same mathematical expression, although they mean two
different things: Sη is a function defined in free space R3 \ Γ and Vη is defined on the
interface Γ. The operators V and Kt are our first two examples of boundary integral
operators, respectivelly called single layer operator and adjoint/transpose double layer
operator. We will need to wait until Chapter 2 to understand the name of the second one,
as well as its superscripted notation.

Some jump relations. We can collect much of the previous information with the help
of the jump and average operators: if u : Rd \ Γ→ R is sufficiently smooth on both sides
of Γ, we write

[[γu]] := γ−u− γ+u, [[∂νu]] := ∂−ν u− ∂+
ν u,

and
{{γu}} := 1

2
γ−u+ 1

2
γ+u, {{∂νu}} := 1

2
∂−ν u+ 1

2
∂+
ν u.

Then, the limiting properties of the single layer potential (1.8) can be condensed aseq:1.10

[[γSη]] = 0, [[∂νSη]] = η, (1.10a)

{{γSη}} = γ±Sη = Vη, {{∂νSη}} = Ktη. (1.10b)

In the jargon of boundary integral equations, these are some of the jump relations of
potentials.

A boundary integral equation. We can now try to use the single layer potential to
solve the exterior Dirichlet problem:eq:1.11

∆u = 0 in Ω+, (1.11a)

γ+u = β0 (on Γ), (1.11b)

u = O(r−1) as r →∞, (1.11c)

for given boundary data β0 : Γ → R, and where the simplified asymptotic notation for
the radiation condition at infinity is self-explanatory. We can look then for a solution of
(1.11) in the form of a single layer potentialeq:1.12

u = Sη, (1.12a) eq:1.12a

for a density η to be determined. This function satisfies the Laplace equation and has the
right asymptotic behavior at infinity. It solves the Dirichlet problem if and only if

Vη = β0. (1.12b) eq:1.12b
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The equation (1.12b), which has the explicit form∫
Γ

η(y)

4π|x− y|
dΓ(y) = β0(x), x ∈ Γ, (1.13) eq:1.13

is our first example of a boundary integral equation. Once again, we are not concerned
with smoothness or regularity of the functions involved in this problem, so we do not have
the right to talk about existence and uniqueness of solution to (1.12b). Note though, that
in principle we will aim for equation (1.13) to be satisfied only almost everywhere, or,
more precisely: on any point not on vertices/edges in the polygonal case, and everywhere
in the case of smooth surfaces. What is important to remember at this point is that
the equation (1.12b) is coupled with the integral representation (1.12a), since it is the
Dirichlet problem (1.11) that is of interest to us, and not the integral equation per se. It
is common to refer to a potential representation of the solution of (1.11) as a potential
ansatz.

Single or simple? There is some discussion in the community on whether the name
of the single layer potential should be simple layer potential, as it would correspond to
a more direct translation of its German origin (due to Carl Friedrich Gauss), which is
respected in other languages. It would also probably pair better with its counterpart, the
double layer potential that we will meet in Chapter 2. (It has to be said that both simple
and single convey the idea of one-ness.) On the other hand, English language usage for
single layer is quite extended and unlikely to change just because we want it to change
(that is probably not how languages work, especially in relatively unimportant topics as
this one), so we will be faithful to the old single layer tradition.

1.3 Some numerical methods
sec:1.3

We fast forward to show two numerical approximation methods for problem (1.12b).
Consider a partition of Γ in relatively open disjoint patches {T1, . . . , TN}

Ti ∩ Tj = ∅ i 6= j, Γ = ∪Nj=1T j,

and the set of piecewise constant functions with respect to this partition

Xh := {ηh : Γ→ R : ηh|Tj ∈ P0(Tj) ∀j}, (1.14)

where P0(Ω) is the set of constant functions on the domain Ω. (We will use a script h to
denote discretization. The meaning of this index will be clear when we study approxima-
tion properties of the space Xh in different norms. In that case h will be the maximum
diameter of the elements of the partition.) A basis for Xh is easy to define using the
characteristic functions of the elements of the partition:

χj :=

{
1, in Tj,
0, elsewhere.

(1.15)
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A Galerkin method. We look for ηh ∈ Xh such that∫
Γ

µh(x)(Vηh)(x)dΓ(x) =

∫
Γ

µh(x)β0(x)dΓ(x) ∀µh ∈ Xh. (1.16) eq:1.16

It is clear that any solution of this equation is also a solution of∫
Ti

(Vηh)(x)dΓ(x) =

∫
Ti

β0(x)dΓ(x) i = 1, . . . , N, (1.17) eq:1.17

since we only need to restrict testing in (1.16) to the basis functions χi. However, linearity
of integration and the fact that {χ1, . . . , χN} is a basis for Xh, shows that (1.17) also
implies (1.16). We can go one step further by decomposing the unknown in the given
basis. We thus look for

(η1, . . . , ηN) ∈ RN , representing ηh =
N∑
j=1

ηjχj, (1.18a)

such that

N∑
j=1

(∫
Ti

(Vχj)(x)dΓ(x)

)
ηj =

∫
Ti

β0(x)dΓ(x) i = 1, . . . , N. (1.18b) eq:1.18b

It is clear from (1.18b) that we are in the presence of an N×N system of linear equations.
A closer inspection to the elements of this matrix show that they are

Vij =

∫
Ti

(Vχj)(x)dΓ(x) =

∫
Ti

∫
Tj

1

4π|x− y|
dΓ(x)dΓ(y). (1.19) eq:1.19

Therefore, the matrix in the system (1.18b) is symmetric. It is also a full matrix to the
furthest extent of this concept: not a single element of the matrix is zero. It will take us
a little bit longer to show that the matrix is also positive definite. This is a consequence
of a coercivity estimate that we will not see for the time being. Once the discrete density
ηh has been computed (by assembling the system (1.18b) and solving it afterwards), the
discrete solution to the Dirichlet problem (1.11) is given by the single layer potential
representation

uh := Sηh :=
N∑
j=1

(∫
Tj

1

4π| · −y|
dΓ(y)

)
ηj.

This is a linear combination of N single layer potentials generated from constant density
distributions on each of the patches Tj. One interesting feature of this kind of methods
is the fact that uh still satisfies the differential equation, and it is only the boundary
condition that has been approximated. More precisely, since uh = Sηh, then

∆uh = 0 in R3 \ Γ, (1.20a)

uh = O(r−1) as r →∞. (1.20b)
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The boundary condition is not satisfied. In its place we have the following bits of infor-
mation on the boundary:

[[γuh]] = 0, [[∂νu
h]] ∈ Xh,

∫
Γ

µh(γ+uh − β0)dΓ = 0 ∀µh ∈ Xh. (1.20c)

The first of these conditions stems from the fact that single layer potentials are continuous
across their boundary. The second one just restates the fact that the jump of the normal
derivative, that is, the density, was found in the subspace Xh. The third condition repeats
the fact that we are forcing some moments of γ+uh = Vηh and β0 to coincide, namely,
those moments obtained by averaging on the elements Ti.

A comment on notation. The matrix (1.19) is symmetric and therefore the order used
to write integration domains and variables in that formula is not very relevant. However,
from now on we will keep the following easy to remember convention: assuming that the
order of integration is not relevant, we will write∫

Ti

∫
Tj

Φ(x,y)dΓ(x)dΓ(y) =

∫
Ti

(∫
Tj

Φ(x,y)dΓ(y)

)
dΓ(x),

that is, we will write the integration variables in the same order as the domains.

Computation of integrals. At the present stage of this text, we are going to ignore
the difficulties of computing the integrals∫

Ti

∫
Tj

1

4π|x− y|
dΓ(x)dΓ(y) and

∫
Ti

β0(x)dΓ(x).

Even in the case of a polyhedral surface (where element integrals become integrals over
plane domains quite easily), partitioned into simple shapes Ti (quadrilaterals or triangles),
this computation is not an easy task. Assume for the moment being that Γ is a poly-
hedron and that it has been subdivided into triangles in the tradition of Finite Element
triangulations: two adjacent triangles can share a common vertex or a common full edge.
We have four situations for pairs of elements (Ti, Tj):

• Ti = Tj,

• T i and T j share a common edge,

• T i and T j share a common vertex,

• T i and T j are disjoint.

Only the latter case is easy to handle from the point of view of the integral in (1.19). In
this case the integrand is a very smooth function of both variables and we can think of
easy ways to approximate the double integral. (This might be misleadingly easy, however,
when the elements are disjoint, but they are geometrically very close, since the function
gets to have very large values and gradients.) All other cases involve integrating functions
with singularities. More about this in the appendices.
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The collocation method. Let us go back to our general partition {Γ1, . . . ,ΓN} and
to the space Xh. We now choose points xi ∈ Ti for all i (one point on each element), and
look for ηh ∈ Xh satisfying

(Vηh)(xi) = β0(xi), i = 1, . . . , N. (1.21)

Equivalently, we can look for coefficients (η1, . . . , ηN) ∈ RN satisfying

N∑
j=1

(∫
Tj

1

4π|xi − y|
dΓ(y)

)
ηj = β0(xi) i = 1, . . . , N. (1.22)

We are again in the presence of an N × N linear system. We have lost symmetry in
the discretization process, but have greatly simplified several aspects: the right-hand-
side does not require any integration process, and the matrix involves only integration
over Tj, as opposed to integration in double the number of variables that appear in
Galerkin methods. It has to be said though, that for this particular equation, even
restricting to simpler boundaries and partitions, there is no satisfactory theory supporting
the collocation method, while the theory of Galerkin methods is very well understood since
over four decades ago, including results for superconvergence that we will mention in due
time.

1.4 The two dimensional case
sec:1.4

While the same ideas that we have explained in Section 1.2 will work in two dimensional
problems, and being able to foresee that the corresponding integral equations will be
simpler (integration on Γ is essentially one-dimensional), the unbounded behavior of the
fundamental solution of the Laplace equation in two dimensions complicates asymptotics
at infinity and the search for well-posed boundary value problems. We start with the
definition of the single layer potential

(Sη)(z) = − 1

2π

∫
Γ

log |z− y|η(y)dΓ(y). (1.23)

The difference between this potential and its three dimensional counterpart is the function

− 1

2π
log |x− y| instead of

1

4π|x− y|
.

This function is the fundamental solution, or Green’s function in free space, for the Lapla-
cian (properly speaking, for the minus Laplacian). For very similar reasons that were
argued in Section 1.2 (details are requested as exercises), if u = Sη with η ∈ L1(Γ), then
u ∈ C∞(R2 \ Γ) and

∆u = 0 in R2 \ Γ, (1.24a)

u = a log r +O(r−1) as r →∞, (1.24b)
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where a = − 1
2π

∫
Γ
η dΓ. The limits of Sη and its normal derivative on both sides of Γ can

be represented using two integral operators:

eq:1.25

(Vη)(x) := − 1

π

∫
Γ

log |x− y|η(y)dΓ(y), (1.25a)

(Ktη)(x) :=

∫
Γ

(y − x) · ν(x)

2π|x− y|2
η(y)dΓ(y). (1.25b)

Like in the three dimensional case, when we think of the integral operators, we have to
remember that the input is a function defined on Γ and the output is a function defined on
Γ too. The jump relations are exactly the same as in the three dimensional case, namely

[[γSη]] = 0, [[∂νSη]] = η, (1.26a) eq:1.26a

and
{{γSη}} = γ±Sη = Vη, {{∂νKtη}} = Ktη. (1.26b) eq:1.26b

Equalities are to be understood as happening only on smooth points of the boundary and
for smooth enough densities. From the rightmost formulas in (1.26a) and (1.26b), it is
easy to prove that

∂+
ν Sη = −1

2
η + Ktη, ∂−ν Sη = 1

2
η + Ktη.

An integral equation for the Dirichlet problem. Consider the exterior problemeq:1.27

∆u = 0 in Ω+, (1.27a)

γ+u = β0 (on Γ), (1.27b)

u = u∞ +O(r−1) as r →∞, (1.27c)

where u∞ ∈ R is unknown. This is a good model for the exterior Dirichlet problem,
looking for bounded solutions. It will be seen in future chapters that the option of
taking u = O(r−1) as the radiation condition leads to problems that might not have
a solution. Based on what we know about the single layer potential, we propose the
following representation for the solution of (1.27)eq:1.28

u = Sη + u∞, where

∫
Γ

η dΓ = 0. (1.28a)

This guarantees that u is a solution of the exterior Laplace equation with the correct
asymptotic behavior at infinity. Both η and u∞ are unknown. The boundary condition
is then equivalent to

Vη + u∞ = β0. (1.28b)
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A Galerkin method. Let now {T1, . . . , TN} be a non-overlapping partition of Γ in the
same conditions as in Section 1.3 and let Xh be equally defined. We then look for ηh ∈ Xh

and uh∞ ∈ R such thateq:1.29 ∫
Γ

µh (Vηh + uh∞)dΓ =

∫
Γ

µhβ0 dΓ ∀µh ∈ Xh (1.29a)

and ∫
Γ

ηh dΓ = 0. (1.29b)

Using the basis of characteristic functions on the elements of the partition {χ1, . . . , χN},
we can look for (η1, . . . , ηN) ∈ RN and uh∞ ∈ R such thateq:1.30

N∑
j=1

Vijηj + |Ti|uh∞=

∫
Ti

β0(x)dΓ(x) i = 1, . . . , N (1.30a)

N∑
j=1

|Tj|ηj =0 (1.30b)

where

Vij = Vji = − 1

2π

∫
Ti

∫
Tj

log |x− y|dΓ(x)dΓ(y) (1.30c)

and |Ti| is the length of the element Ti. The global matrix is symmetric but has a not
very attractive zero in the last diagonal term. An exercise below suggests a simple way
around this. As for implementation of this problem, we propose some approximations of
the integrals in one of this chapter’s projects.

The interior problem. One interesting feature of this single layer representation of
the solution of the Dirichlet problem is that if (η, u∞) solve (1.28), the interior part of the
potential representation (after all Sη + u∞ is well defined in R2 \ Γ) is also a solution of

∆u = 0 in Ω−, γ−u = β0.

1.5 Lipschitz domains (*)
sec:1.A.1

In this section we are going to describe with precision what the type of domains are, for
which we will be delivering precise mathematical statements about the boundary element
method. Where and why some of the hypotheses of the definition are used is not easy to
grasp unless you are willing to go deep in the theory of Sobolev spaces. The goal of this
course is not that, but it is necessary to have delimited the scope of our theory and to
warn of the dangers of more complicated situations.

Let then Ω− be a bounded open domain in Rd with boundary Γ and exterior Ω+.
Assume now that for every point x ∈ Γ (and here every means, exactly for every point),
we can find:
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(a) a vector a ∈ Rd and an orthogonal matrix Q, determining a rigid motion

Φ(x) = Qx + a,

(b) a Lipschitz function h : Rd−1 → R, that is, a function for which there exists L such
that

|h(x̃)− h(ỹ)| ≤ C|x̃− ỹ| ∀x̃, ỹ ∈ Rd−1,

(c) and a cylindrical reference domain

{(x̃, t) ∈ Rd−1 × R : |x̃| ≤ ε, |t| ≤ ρ},

so that

Φ(x̃, h(x̃) + t) ∈ Ω+, |x̃| ≤ ε, 0 < t ≤ ρ,

Φ(x̃, h(x̃)) ∈ Γ, |x̃| ≤ ε,

Φ(x̃, h(x̃)− t) ∈ Ω+, |x̃| ≤ ε, 0 < t ≤ ρ.

(The elements of the above list –rigid motion, Lipschitz graph, and localization cylinder–
depend on the point x.) In this case we say that Ω− is a (strongly) Lipschitz domain. We
also say that Γ is locally a Lipschitz graph and Ω− is locally a Lipschitz hypograph (it can
be locally placed under a Lipschitz graph.) Note that the local process to observe/describe
a Lipschitz hypograph consists of the following steps (see Figure 1.1):

• create a (possibly small) localization cylinder;

• deform the cylinder in the vertical xd direction using the Lipschitz function;

• apply a rigid motion to place this locally deformed cylinder in the physical space,
making the image of the original horizontal disk (x̃, 0) part of the boundary, the
negative part being mapped to the interior domain, and the positive part to the
exterior domain.

In some theoretical expositions it is common to flip the xd axis so that the domain is a
hypergraph. This obviously does not change the kind of domains.

Examples. Most friendly domains are Lipschitz domains. Circles, rectangles, simple
polygons,... are planar Lipschitz domains. Domains with internal or boundary cracks are
not Lipschitz domains. Domains with cuspidal points on the boundary are not Lipschitz
domains. Similarly, spheres, torii, hexahedra,... are Lipschitz domains in the space, and
once again, cracked domains are excluded. (This does not mean that they cannot be dealt
with at all, but that much of what we are going to say here has to be adapted, sometimes
in highly nontrivial ways, to these more general situations.)
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h

Γ

Ω
−

Ω
+

Figure 1.1: The localization process in the definition of a Lipschitz domain. The cylinder
on the left. Its deformation by a part of a Lipschitz graph in the center. The deformed
cylinder being rigidly mapped to physical coordinates. fig:1.1

Figure 1.2: A non-Lipschitz planar polygon. The central point of the figure is troublesome,
since the domain cannot be placed on one side of the boundary at this point.

The normal vector. Due to a well-known but really deep theorem by Rademacher,
the function h is differentiable almost everywhere in its domain of definition. This means
that we can attach a tangent plane to almost every point in the graph Φ(x̃, h(x̃)). The
unit normal vector at the point z = (x̃, h(x̃)), pointing towards Ω+ will be denoted ν(z).
It is not complicated to see that the normal vector at the point exists and coincides even if
we change the point x around which we are localizing. We thus get an almost everywhere
defined unit vector field ν : Γ→ Rd. In the case of a polyhedral domain, the construction
of the normal vector field is completely straightforward.

Smooth domains. If we still assume the same construction as in the definition of
Lipschitz domain, but increase the smoothness of the function h in step (b), then we get
smoother versions of the definition. In particular, if instead of a Lipschitz function h,
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Figure 1.3: Two views of a popular non-Lipschitz polyhedron, made up of to corssing
bricks. The crossing point is the only point where we cannot take a point of view allowing
us to locally view the boundary as a graph. Note that ‘topologically’ the figure is quite
simple, but this lack of visibility of the boundary is enough for the domain not to fit in
the hypotheses. The domain is however an example of weakly Lipschitz domain.

we take h to be an infinitely often differentiable function, we obtain a smooth domain.
Several interesting geometric constructions can be carried out for smooth domains (or for
sufficiently smooth domains, meaning with h several times continuously differentiable).
The normal vector ν(x) is well defined for every point x ∈ Γ. We can then find ε > 0
such that the set of points

{x + tν(x) : x ∈ Γ, |t| ≤ ε}

satisfy x + tν(x) = y + sν(y) if and only if x = y and s = t. In this tubular domain, we
can extend the normal vector field to a function ν(x + tν(x)) = ν(x) (for x ∈ Γ, |t| ≤ ε),
that is, the normal vector field can be constantly extended among the normal direction.
This extension is a smooth function in its domain of definition.

1.6 Literature, exercises and working projects

1. (Section 1) Let u : Ω+ ⊂ R2 → R be smooth up to the boundary and satisfying
(1.4). Give conditions on a, b and c for u to be in L2(Ω+).

2. (Section 1) Let u : Ω+ ⊂ R3 → R be smooth up to the boundary and satisfying
(1.4). Give conditions on a and b for u to be in L2(Ω+).

3. (Section 2 – Needs analysis) Show that if Φ : Rd ×Rd → R is of class C∞ in the set
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{(z,y) ∈ Rd × Rd : z 6= y}, and η ∈ L1(Γ), then

u(z) :=

∫
Γ

Φ(z,y)η(y)dΓ(y)

is in C∞(Rd \ Γ) and can be arbitrarily often differentiated under integral sign. Use
this to show that the single layer potential in two and three dimensions is a smooth
function and that it satisfies the Laplace equation.

4. (Section 2) Prove that∣∣∣∣ 1

|z− y|
− 1

|z|

∣∣∣∣ ≤ CR
|z|2

, |z| ≥ 2R ≥ 2|y|.

Use it to prove that the three dimensional single layer potential satisfies

(Sη)(z) =
1

4π|z|

∫
Γ

η(y)dΓ(y) +O(|z|−2) as |z| → ∞.

5. (Section 2) The previous exercise gives an explicit formula for the first asymptotic
term at infinity of the single layer potential. Find an explicit expression of the
second one, that is, the term you have to subtract to the single layer potential to
get an O(|z|−3) remainder.

6. (Section 2) Let

Ed(x,y) :=


− 1

2π
log |x− y|, (d = 2),

1

4π|x− y|
, (d = 3).

Show that

∇yEd(x,y) =
1

2d−1π|x− y|d
(x− y).

7. (Section 4) Show that

C1,R

|x|
≤ log |x− y| − log |x| ≤ C2,R

|x|
, |x| ≥ 4R ≥ 4|y|.

Use it to prove that in two dimensions

(Sη)(z) = − 1

2π
log |z|

∫
Γ

η(y)dΓ(y) +O(|z|−1) as |z| → ∞.

8. (Section 4) Exact solutions of the Laplace equation. Let x1,x2 be two distinct
points in Ω−. Show that

u(x) = log
|x− x1|
|x− x2|

is an exterior decaying solution of the Laplace equation in two dimensions. Show
that 1, x1, x2, x

2
1 − x2

2, x1x2 are also solutions to the interior Laplace equation. Find
more polynomial solutions in two and three dimensions. (Polynomials satisfying the
Laplace equation are called harmonic polynomials.)
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9. (Section 4) Instead of the given basis for Xh, we can use the following modified basis

χ̃i := 1
|Ti|χi −

1
|Γi+1|χi+1, i = 1, . . . , N − 1, χ̃N := χ1 + . . .+ χN = 1.

If we represent the solution of (1.29) as

ηh =
N∑
j=1

η̃jχ̃j,

show that the system can be decoupled into the computation of the coefficients η̃j
followed by the computation of uh∞. Write down the corresponding matrix. Finally,
relate the coefficients {η̃j} to the coefficients {ηj} of the decomposition with respect
to the original basis of Xh.

10. (Section 4) Assume that we have been able to solve

Vη + u∞ = β0,

∫
Γ

η dΓ = c,

for given β0 and c ∈ R. What problem is u = Sη + u∞ solving in this case? (Note
that in this case, the leading asymptotic behavior is unbounded, but given.)

11. (Section 4) The logarithmic capacity. In this exercise we are going to assume
that the problem

Vφ+ a = 0,

∫
Γ

φ dΓ = 1,

admits a unique solution. We then define CΓ := exp(−a). The quantity a is called
Robin’s constant for Γ and CΓ is called the logarithmic capacity of Γ. The function
φ is called the equilibrium distribution for Γ.

(a) Show that CΓ is invariant by translations, plane symmetries and rotations of Γ.
(Hint. Write the system that defines (φ, a) explicitly and apply translations,
symmetries and rotations to Γ.)

(b) If cΓ := {cx : x ∈ Γ} with c > 0, show that CcΓ = cCΓ, which means that the
logarithmic capacity scales like a diameter.

(c) For the given solution (φ, a), we define u = Sφ. Show that u is constant in Ω−.
(This requires a uniqueness argument for the solution of the interior Laplacian
that you can assume.)

(d) Show that if CΓ = 1, then V is not injective.

(e) Show that the logarithmic capacity of a disk is its radius. (This one is quite
difficult. It is easy to use a symmetry argument to guess that φ has to be con-
stant. Using this and an exact computation, it is possible to find the solution
for the case of the circle of radius one.)

16



Project # 1.1 – A quadrature method (coding)

Statement of the problem. We are looking for a numerical solution for the inte-
rior/exterior Dirichlet problem for the Laplacian

∆u = 0 in R2 \ Γ, γ±u = β0, u = u∞ +O(r−1) at infinity,

in the case when Γ is a smooth parametrizable curve in the plane. A boundary integral
formulation for this problem has been given in Section 1.4. and the exercise list contains
several exact solutions for both interior and exterior problems. Our starting point is a
1-periodic parametrization of the boundary x : R→ Γ ⊂ R2, with the following properties

x(t+ 1) = x(t) ∀t, |x′(t)| 6= 0 ∀t, x(t) 6= x(τ) t− τ 6∈ Z.

We next parametrize equations (1.28). We abuse notation by renaming

β0(t) := β0(x(t)), η(t) := η(x(t))|x′(t)|.

The integral system (1.28) is then equivalent to the periodic integral equationeq:project1

− 1

2π

∫ 1

0

log |x(t)− x(τ)| η(τ)dτ + u∞ = β0(t) ∀t (1.31a) eq:project1a

with the side condition ∫ 1

0

η(τ)dτ = 0 (1.31b)

and the potential representation

u(z) = − 1

2π

∫ 1

0

log |z− x(τ)| η(τ) dτ + u∞. (1.31c)

A quadrature method. The method to approximate (1.31) is simple. We approximate
every integral by the trapezoidal rule on a uniform grid, and collocate (1.31a) in pairs of
strategically chosen points. We thus choose an integer N , define h := 1/N and consider
the parametric points

tj := j h, t+i := (i+ 1
6
)h, t−i := (i− 1

6
)h. (1.32) eq:project1.2

For ease of notation we will write
∑
± a± = 1

2
(a+ +a−) for the average of quantities tagged

with the ± signs. The unknowns are then ηj ≈ h η(tj) and the system is:eq:project1.3

− 1

2π

∑
±

N∑
j=1

log |x(t±i )− x(tj)|ηj + uN∞ =
∑
±

β0(t±i ), i = 1, . . . , N, (1.33a)

N∑
j=1

ηj = 0. (1.33b)
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The solution is postprocessed to a discrete potential

uN(z) = − 1

2π

N∑
j=1

log |z− x(tj)| ηj + uN∞. (1.33c)

Estimate the errors
|u(z)− uN(z)| = O(N−3)

for different points z and increasing values of N . Try with different geometries and
different points. Show that as z gets closer to the boundary the errors degenerate. The
±1/6 lateral displacement in the observation points t±i in (1.32) can be changed to be a
parameter ±ε. Try other choices and compare orders of convergence. For a given value
of N graph the error as a function of the parameter ε.

Another way of getting to the same method. We can devise a Galerkin method
for (1.31) based on the space

Xh := {η : R→ R : η(1 + ·) = η, η|(ti−h/2,ti+h/2) ∈ P0 ∀i}.

Show that the discrete equations can be understood as a full discretization of the Galerkin
equations using the midpoint quadrature for one of the integrals and a two point quadra-
ture for the other one. (Note that the use of different quadrature rules makes the matrix
non-symmetric.)
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Project # 1.2 – A Galerkin procedure (coding)

Statement of the problem. Let Γ be a simple closed polygon in the plane. We
are looking for a numerical solution for the interior/exterior Dirichlet problem for the
Laplacian

∆u = 0 in R2 \ Γ, γ±u = β0, u = u∞ +O(r−1) at infinity,

using the Galerkin equations (1.30) leading to a potential representation

uh(z) =
N∑
j=1

Φj(z)ηj + uh∞, Φj(z) := − 1

2π

∫
Tj

log |z− y|dΓ(y).

An exact computation. Let e be a segment joining points v and w, and let z ∈ R2.
Then ∫

e

log |z− y|dΓ(y) = f(β, η)− f(α, η), (1.34) eq:project2.1

where

f(t, η) :=
t

2
log(t2 + η2) + η arctan

(
t

η

)
− t,

and

` := |w − v|, η := (z− v) · n,

t :=
1

`
(w − v), α := −(z− v) · t,

n := t⊥ = (t2,−t1), β := α + ` = −(z−w) · t.

Prove (1.34).

Gaussian quadrature. Let e be again a segment joining the points v and w. Then
we can approximate ∫

e

ρ(y)dΓ(y) ≈ |`|
2

(ρ(g+) + ρ(g−)), (1.35) eq:project2.2

where
g± = 1

2
(v + w)± 1

2
√

3
(w − v).
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The method. The Galerkin equations (1.30) need approximation of some integrals. For
the right-hand-side, use Gaussian integration as in (1.35). For the matrix, compute the
following approximation

Vij ≈ V ns
ij := − 1

2π

|Ti|
2

(∫
Tj

log |g+
i − y|dΓ(y) +

∫
Tj

log |g−i − y|dΓ(y)

)
,

where g±i are the Gaussian points in the element Ti, and the integrals can be computed
analytically using (1.34). Finally symmetrize Vij ≈ 1

2
(V ns

ij + V ns
ji ).

Book-keeping. One of the most complicated parts of numerical coding is having the
right data structures. The partition of the boundary can be described with two matrices.

• The first one is an N × 2 matrix with the coordinates of all nodes of the partition
of Γ. We will refer to it as coord. Then coord(i, :) = [x, y] are the coordinates of
the node number i. The matrix itself imposes the ordering of the nodes.

• The second one is a matrix with the element references. It is equally an N×2 matrix
with positive integers as entries: if ele(i, :) = [2, 5], this says that the element Ti
starts at the point v2 and ends at the point v5. It is convenient that numbering of
elements is done with positive orientation, that is, if you go from the first vertex to
the second, the domain lies to the left-hand-side of the element.

As a first part of your code you will have to create some code to generate partitions of a
given polygon, generating the coordinate and the element matrices.

Experiments. Fix a polygon and create a sequence of partitions (uniform is fine in
a first approach). The computations needed for obtain uh(z) can be carried out with
analytic integration as in (1.34). Compare then

|uh(z)− u(z)|.

There are several exact solutions for interior and exterior problems in the exercise list.
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Project # 1.3 – The Helmholtz equation

The single layer potential. Consider the following function

Φ(z) :=
eıω|z|

4π|z|
.

Show that the function u(z) := Φ(z− x0) satisfies

∆u+ ω2u = 0 in R3 \ {x0}.

This equation is called the Helmholtz equation and the function u above is called the out-
going fundamental solution of the Helmholtz equation. Show that u satisfies the following
radiation condition at infinity

∂ru(z)− ıωu(z) = o(|z|−1) as |z| → ∞,

where the radial partial derivative is defined as

∂ru(z) = ∇u(z) ·
(

1
|z|z),

and the little o Landau symbol has to understood in the following way: f(z) = o(|z|−m),
when |z|m|f(z)| → 0 as |z| → ∞, uniformly in all directions. This condition at infinity is
called the Sommerfeld radiation condition. The single layer potential for the Helmholtz
equation is defined as

(Sη)(z) :=

∫
Γ

eıω|z−y|

4π|z− y|
η(y)dΓ(y).

Show that Sη defines a smooth solution of ∆u+ω2u = 0 in R3\Γ, satisfying the Sommerfeld
radiation condition at infinity.

A more challenging question. Study the behavior of the difference of the Helmholtz
and Laplace potentials

w(z) :=

∫
Γ

eıω|z−y| − 1

4π|z− y|
η(y)dΓ(y).

In particular, if x0 ∈ Γ is a smooth point on the boundary, study the limiting behavior
of w and ∇w as z→ x0 from both sides of the boundary.

Relation to the wave equation. Assume that U is a solution of the wave equation

∂2
tU −∆U = 0

that can be written in the form

U(z, t) = Re (e−ıωtu(z)) = cos(ωt)Reu(z) + sin(ω t)Imu(z).
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Show that u is a solution of the Helmholtz equation. If u = Φ(· − x0), show that the
corresponding function U is an spherical kind of wave moving away from x0. If we
consider instead u = Φ(· − x0), study what the radiation condition at infinity is, and how
the time-domain function U behaves.

The two dimensional case. Repeat as many of the previous arguments as you can
with the two dimensional Helmholtz equation. The fundamental solution uses a Hankel
function of the first kind and order zero:

ı

4
H

(1)
0 (ω|z|),

and the associated radiation condition is

∂ru(z)− ıωu(z) = o(|z|−1/2) as |z| → ∞.

This part of the project will require you to inquire on basic properties of the Hankel
functions (their derivatives, their behavior at infinity, etc).
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Chapter 2

Green’s representation formula

chap:2

2.1 The double layer potential

Let us start by reminding ourselves about the fundamental solution for the Laplacian

Ed(x,y) =


− 1

2π
log |x− y|, (d = 2),

1

4π|x− y|
, (d = 3),

and about a simple computation that was previously proposed as an exercise:

∇yEd(x,y) =
1

2d−1π|x− y|d
(x− y).

For a given density ψ : Γ→ R, the double layer potential is defined by the formula

(Dψ)(z) :=

∫
Γ

∇yEd(z,y) · ν(y)ψ(y)dΓ(y) =

∫
Γ

(z− y) · ν(y)

2d−1π|z− y|d
ψ(y)dΓ(y).

In the same way that the single layer potential is a continuous distribution of monopoles on
the boundary Γ, the double layer potential can be understood as a continuous distributrion
of dipoles oriented in the normal direction. The idea of the dipole is simple: it is the limit
of the scaled difference of potentials generated by two opposing charges

∇yEd(x,y) · d = lim
h→0

1

2h

(
Ed(x,y + hd)− Ed(x,y − hd)

)
.

This argument can be stretched to let us understand the double layer potential as the limit
of two single layer potentials with the same density of parallel surfaces as the distance of
the surfaces decreases. As usual, some properties are easy: if ψ ∈ L1(Γ) and we define
u = Dψ, then u ∈ C∞(Rd \ Γ), andeq:2.2

∆u = 0 in Rd \ Γ, (2.1a)

u = O(r−d+1) as r →∞. (2.1b)
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The side limits of the double layer potential are given by the following (more complicated
to prove) relations, valid on smooth points x ∈ Γ and for smooth enough densities:eq:2.3

(γ+Dψ)(x) =
1

2
ψ(x) +

∫
Γ

(x− y) · ν(y)

2d−1π|x− y|d
ψ(y)dΓ(y), (2.2a)

(γ−Dψ)(x) = −1

2
ψ(x) +

∫
Γ

(x− y) · ν(y)

2d−1π|x− y|d
ψ(y)dΓ(y). (2.2b)

We will not give a closed formula for the side normal derivatives, but be content with
saying at this moment that

∂+
ν Dψ = ∂−ν Dψ. (2.2c)

Two more boundary operators. We thus define two associated boundary integral
operators

(Kψ)(x) :=

∫
Γ

(x− y) · ν(y)

2d−1π|x− y|d
ψ(y)dΓ(y), (2.3a)

(Wψ)(x) := −∂ν(x)

∫
Γ

(x− y) · ν(y)

2d−1π|x− y|d
ψ(y)dΓ(y). (2.3b)

While it would be extremely tempting to move the normal derivative in the definition
of W inside the integral, the result would be a function with a very strong singularity
that is not integrable any more. The kind of non-integrable singularity that would thus be
obtained justifies naming this operator the hypersingular operator. There is a possible way
of writing the operator using finite part integrals. We will not follow that route here, and
will circumvent the problem using other possible expressions. The operator K is called
the double layer operator. The negative sign in the definition of W might look somewhat
bizarre, but is very convenient from the point of view of positivity of the operator, as we
will see in due time. Note that, at least formally,∫

Γ

(Kψ)(x)η(x)dΓ(x) =

∫
Γ

∫
Γ

(x− y) · ν(y)

2d−1π|x− y|d
ψ(y)η(x)dΓ(x)dΓ(y)

=

∫
Γ

ψ(y)(Ktη)(y)dΓ(y),

which justifies the notation for Kt and its being called the adjoint double layer operator.
Once again, and because it is important, remember that potentials take input (densities)
on the boundary and build functions in the entire space (in Rd\Γ more properly speaking),
while the output of the integral operators is a function defined on the boundary.

The jump relations. Equations (2.1) and definitions (2.2) can be written together in
the form of the jump relations of the double layer potential:

[[γDψ]] = −ψ, [[∂νDψ]] = 0, (2.4a)

{{γDψ}} = Kψ, {{∂νDψ}} = ∂±ν Dψ = −Wψ. (2.4b)
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Is there anything we can do with the minus signs? There are two details in the
limiting and jump relations of potentials that have annoyed authors since time immemo-
rial. The first one is the prevalence of the 1

2
factors in the limiting relations

∂±ν Sη = ∓1
2
η + Ktη, γ±Dψ = ±1

2
ψ + Kψ.

This is easily avoided by changing the definition of all the potentials and operators.
Instead of working with Ed(x,y), we just need to work with 2Ed(x,y) everywhere. Of
course, what changes then are the jump relations, since jumps of the potentials yield
twice the densities. This is actually done by many mathematically inclined authors, but
it is far from being the standard. The reader should be warned that every time they
approach any writing with potentials, the first thing to be done is to be sure that the
definitions are the same. (The letters chosen for potentials and operators also vary from
author to author.) The second incovenience comes from the minus sign in the definition
of W and the fact that [[γDψ]] = −ψ. Every now and then, someone comes with the idea
of changing the sign in the definition of the double layer potential. The minus sign then
reappears in the definition of K (or can be moved to the definition of Kt, since it would
not be reasonable to call transpose to the minus transpose of an operator). That would
be a minor inconvenience. Another one would occur in the next page, when the last of
Green’s identities suddenly stops being a commutator formula. The veredict is unclear,
and uses are unlikely to change, so we will stick to more traditional definitions.

An energy free solution. The interior Neumann problem for the Laplace equation
has a one dimensional kernel, namely the solutions of

∆u = 0 in Ω−, ∂−ν u = 0

are constant functions. In the way we will impose behavior at infinity for the exterior
Neumann problem, constants will not be a problem. This effect passes onto the double
layer potential. Consider the function

u(z) = (D1)(z) =

∫
Γ

∇yEd(z,y) · ν(y)dΓ(y).

If z ∈ Ω+, then we can apply the divergence theorem to the smooth vector field v(y) :=
∇yEd(z,y) to obtain

(D1)(z) =

∫
Γ

v(y) · ν(y)dΓ(y)

=

∫
Ω−

div v =

∫
Ω−

∆Ed(z, ·) = 0.

By looking at the exterior limits, we obtain

1
2

+ K1 = γ+D1 = 0, (2.5a) eq:2.5a

W1 = −∂+
ν D1 = 0. (2.5b)
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Let us now turn our attention to what happens in Ω−. The interior part of the potential
u := (D1)|Ω− satisfies ∆u = 0 in Ω− (it is a potential after all), and also ∂−ν u = ∂+

ν D1 = 0.
Therefore u is constant in Ω−. But we even know more:

γ−u = γ−D1 = −1
2

+ K1 = −1

by (2.5a). All of this proves that

D1 = −χΩ− =

{
−1, in Ω−,
0 in Ω+.

2.2 Green’s Third Identity

Some background. Let us agree that everyone with some calculus background can
easily remember the divergence theorem of Gauss:∫

Ω−

div p =

∫
Γ

p · νdΓ. (2.6) eq:2.6

The difficulties for this theorem are on how smooth p and Ω− have to be for this equation
to hold. When we get to Sobolev spaces we will see how a clean cut definition seems to
solve the problem. (As usual the devil will be in the details.) If we apply this equality
to a vector field of the form v q and use Leibnitz’s rule to compute the divergence of the
product, we get ∫

Ω−

(∇v · q + v div q) =

∫
Γ

v q · νdΓ. (2.7) eq:2.7

In the Partial Differential Equation community (especially among numericians), this for-
mula is often referred to as integration by parts. The reason is simple: in a one dimensional
domain Ω− = (a, b), the divergence theorem (2.6) is Barrow’s rule (the connection between
integration and differentiation) ∫ b

a

f ′ = f(b)− f(a)

(the minus sign is due to the normal vector), and (2.7) is∫ b

a

f ′g + fg′ = f(b)g(b)− f(a)g(a),

which written in the slightly different way∫ b

a

f ′g = f g
∣∣b
a
−
∫ b

a

fg′+

becomes the popular integration by parts formula. We can now take q = ∇u in (2.7) to
obtain ∫

Ω−

(∇u · ∇v + v∆u) =

∫
Γ

v∂νu dΓ, (2.8) eq:2.8
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which is Green’s First Identity. This formula is the key in the weak understanding of
the Laplacian that is needed to justify much of what is happening in these preliminary
chapters. It is also the bread and butter of Finite Element theorists and practitioners.
If we apply (2.8) to the pairs (u, v) and (v, u) and subtract the result, we obtain Green’s
Second Identity ∫

Ω−

(v∆u− u∆ v) =

∫
Γ

(v∂νu− u∂νv)dΓ. (2.9) eq:2.9

An intuitive presentation of the Third Identity. Choose now u satisfying ∆u = 0
and v = Ed(z, ·) with z ∈ Ω+. Then (2.9) tells us that∫

Γ

Ed(z,y)∂νu(y)dΓ(y)−
∫

Γ

∇yEd(z,y) · ν(y)u(y)dΓ(y) = 0, when z ∈ Ω+.

We can read this formula using potentials: it says that

S∂−ν u−Dγ−u = 0 in Ω+.

If z ∈ Ω−, the argument is fuzzier. We will admit the following fact (that we will eventually
prove):

−
∫

Ω−

u(y) ∆yEd(z,y)dy = u(z). (2.10) eq:2.10

This is often written using Dirac delta distributions as

−∆Ed(z, ·) = δz.

Plugging (2.10) in Green’s Second Identity (2.9), we obtain∫
Γ

Ed(z,y)∂νu(y)dΓ(y)−
∫

Γ

∇yEd(z,y) · ν(y)u(y)dΓ(y) = u(z), when z ∈ Ω−.

So far, what we have shown (this is not a proof though) is that if ∆u = 0 in Ω−, then

S∂−ν u−Dγ−u =

{
u, in Ω−,
0, in Ω+.

(2.11) eq:2.11

To figure out what happens on the boundary, we take the jump relations and compute
starting in (2.11)

γ−u = γ−S∂−ν u− γ−Dγ−u

= V∂−ν u− (1
2
γ−u+ Kγ−u)

which can be rearranged to yield

V∂−ν u−Kγ−u = 1
2
γ−u. (2.12) eq:2.12

The collection of (2.11) and (2.12) is what is known as Green’s Third Identity. It is often
presented as follows:∫

Γ

Ed(z,y)∂νu(y)dΓ(y)−
∫

Γ

∇yEd(z,y) · ν(y)u(y)dΓ(y) =


u(z), z ∈ Ω−,
1
2
u(z), z ∈ Γ,

0, z ∈ Ω+,
(2.13) eq:2.13
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with the serious warning that the equality in points of the boundary holds only on smooth
points (those with a tangent plane) and that we have assumed that ∆u = 0 in Ω−. We
could have also started with a more general u so that the term ∆u stays in the formula,
that is, in the right-hand-side of (2.13) we have to add the term∫

Ω−

Ed(z,y)∆u(y)dy.

A different formulation. Since we care about exterior problems, our next step would
be trying to justify (2.13) for exterior domains. There are two things to take into account:
(a) the normal vector points inwards now, so this will force a change of signs in the formula;
(b) at the very beginning we are using the divergence theorem to move to the boundary,
but we have to pay attention to behavior at infinity to be sure that the integration by
parts process is meaningful. Instead, we are going to take a different approach by stating
(not proving or arguing) a Green’s Third Identity in space. (There will be some keys to
readjust in the two dimensional case.) Let then u satisfy

∆u = 0 in R3 \ Γ, u = O(r−1) at infinity. (2.14)

If u is smooth enough (conditions will have to wait to Chapter ??), theneq:2.15

u = S[[∂νu]]−D[[γu]]. (2.15a) eq:2.15a

Using the jump relations of potentials, it follows that on the boundary

{{γu}} = V[[∂νu]]−K[[γu]], (2.15b)

{{∂νu}} = Kt[[∂νu]] + W[[γu]]. (2.15c)

Green’s Third Identity is the collection of all equations (2.15) or just the representation
formula (2.15a), which implies the other two identities.

Green’s Third Identity for exterior domains. Consider now u such that

∆u = 0 in Ω+, u = O(r−1) at infinity,

where we are again in the three dimensional case. Let us extend u by zero to the interior
domain, while keeping the same name. Then [[γu]] = −γ+u, [[∂νu]] = −∂+

ν u, and the
representation formula (2.15a) says now

−S∂νu
+ + Dγ+u =

{
u, in Ω+,
0, in Ω−.

(2.16a)

On the boundary, we now have the identities

1
2
γu+ = −V∂+

ν u+ Kγ+u, (2.16b) eq:2.16b

1
2
∂+
ν u = −Kt∂+

ν u−Wγ+u. (2.16c)
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A two dimensional version of Green’s Third Identity. Assume now that

∆u = 0 in R2 \ Γ, u = a+O(r−1) at infinity.

Then ∫
Γ

∂+
ν udΓ = 0. (2.17)

Note that in any dimension ∫
Γ

∂−ν udΓ =

∫
Ω−

∆u = 0,

by the divergence theorem. Therefore, now we have∫
Γ

[[∂νu]]dΓ = 0.

The representation formula is now

u = S[[∂νu]]−D[[γu]] + a,

and the corresponding integral identities follow from the jump relations

{{γu}} = V[[∂νu]]−K[[γu]] + a,

{{∂νu}} = Kt[[∂νu]] + W[[γu]].

All the other arguments for the three dimensional case still apply.

2.3 A direct boundary integral equation
sec:2.3

A direct method. Let us go back to the exterior Dirichlet problem in three dimensions:
eq:2.17

∆u = 0 in Ω+, (2.18a)

γ+u = β0 (on Γ), (2.18b)

u = O(r−1) as r →∞. (2.18c)

In Section 1.2 we explored a single layer potential based formulation

u = Sη, where Vη = β0.

In this formulation η is just an unknown density, with not much relation to the problem
at hand, apart from being able to deliver the solution via an integral representation. This
kind of boundary integral formulation, where we propose an integral representation and
derive an associated boundary integral equation is called an indirect method. Instead we
can do the following. First let us name the Cauchy dataeq:2.18

ϕ := γ+u, λ := ∂+
ν u. (2.19a)
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Next, we use Green’s identity as the potential representation:

u = Dϕ− Sλ. (2.19b)

Finally, we look at the exterior trace of this latter representation and impose the known
boundary value:

1
2
ϕ = Kϕ− Vλ, ϕ = β0. (2.19c) eq:2.18c

Equation (2.19c) can be reorganized to look

Vλ = −1
2
ϕ+ Kϕ = (−1

2
I + K)ϕ, ϕ = β0, (2.20) eq:2.19

where we have now introduced an identity operator I. We are going to keep this slightly
illogical notation of keeping two names for what is the same quantity ϕ = β0. This
will allow us to later unify some formulas but, even more importantly, we are going to
consider the possibility of discretizing data, so that ϕ will end up being an approximation
to β0. There are two novelties in (2.20). First of all, the data (or a copy/approximation
of the data) appear under the action of an integral operator in the right-hand-side of
the equation. This is obviously more work for us to code. Secondly, λ is now a physical
variable (λ = ∂+

ν u), which might have its own interest, independently of the integral
representation that yields the solution of the exterior Dirichlet problem. A formulation
based on Green’s formula, using partial Cauchy data as unknowns, is called a direct
method.

Discretization. In principle, we could address the discretization of (2.20) in exactly
the same form that we used in Section 1.3. We start with a partition of Γ in elements
{Γ1, . . . ,ΓN}, consider the space Xh of piecewise constant functions and discretize, either
with a Galerkin method

λh ∈ Xh,

∫
Γ

µh(Vλh)dΓ = −1

2

∫
Γ

µhβ0dΓ +

∫
Γ

µh(Kβ0)dΓ ∀µh ∈ Xh,

or with a collocation method

λh ∈ Xh, (Vλh)(xi) = −1

2
β0(xi) + (Kβ0)(xi) i = 1, . . . , N.

In both cases the matrix is the same as in the indirect formulation. What changes is the
right-hand-side, that now incorporates the need to evaluate an integral operator.

Further discretization. It is common in some communities to address the discretiza-
tion of all the integral operators as if they were acting on discrete quantities, and then
project or interpolate data onto the discrete spaces. We are going to explore this idea
briefly now. To explain better what we want to do, we need to restrict to a more partic-
ular case. We assume Γ to be a polyhedron that has been partitioned into N triangles
{T1, . . . , TN}. We can then consider the usual space Xh and the space

Yh := {ψh ∈ C(Γ) : ψh|Tj ∈ P1(Tj) ∀j}.
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Since the elements Tj are flat pieces of a surface, the meaning of the space P1(Tj) is not
complicated: it is just the space of polynomials of two variables and degree up to one,
written in tangential coordinates. In other words, if Tj is a triangle with vertices vj` for
` = {1, 2, 3}, then

φj(s, t) = vj1 + s(vj2 − vj1) + t(vj3 − vj1)

can be chosen as a parametrization of Tj from the reference element

T̂ = {(s, t) : s, t ≥ 0, s+ t ≤ 1}.

Then
P1(Tj) = {p : Tj → R : p ◦ φj ∈ P1(Γ̂)}.

This process of sending a space from a reference element to each physical element is called
pushing forward. A basis for Yh is easy to construct. Let {v1, . . . ,vM} be a numbering of
all vertices of the triangulation. To each vertex vj we can associated a function ψj ∈ Yh
satisfying

ψj(vi) = δij.

This is a simple basis of Yh. We can then discretize (2.20) in the following way. We first
construct

ϕh ∈ Yh ϕh(vi) = β0(vi) i = 1, . . . ,M, (2.21a)

which gives the explicit representation

ϕh =
M∑
j=1

β0(vj)ψj.

We then look for λh ∈ Xh satisfying

λh ∈ Xh,

∫
Γ

µh(Vλh)dΓ = −1

2

∫
Γ

µhϕhdΓ +

∫
Γ

µh(Kϕh)dΓ ∀µh ∈ Xh. (2.21b)

There are three matrices involved in this discretization process. The first one is the
Galerkin matrix (1.19) associated to the operator V, namely

Vij =

∫
Γ

χi(Vχj)dΓ =

∫
Ti

∫
Tj

1

4π|x− y|
dΓ(x)dΓ(y).

The second matrix is rectangular N ×M with elements

Mij =

∫
Γ

χiψjdΓ =

∫
Ti

ψj =

{
1
3
|Ti| if Ti ⊂ Ξj,

0 otherwise,

where
Ξj = ∪{Γ` : vj ∈ Γ`}

is the patch of triangles sharing vj as a vertex. The third matrix is

Kij =

∫
Γ

χi(Kψj)dΓ =

∫
Ti

∫
Ξj

(x− y) · ν(y)

4π|x− y|2
ψj(y)dΓ(x)dΓ(y).
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The global system is then

N∑
j=1

Vijλj =
M∑
j=1

(−1
2
Mij +Kij)β0(vj).

The matrix Mij is very sparse, containing a very reduced number of elements in each row.
The matrix Kij is full once again, although not as full as the matrix Vij, in this case if Ti
and Ξj are contained in the same face of Γ, the element Kij vanishes.

2.4 An equation of the second kind

For reasons that we will explore in the exercise list, in order to use a double layer potential
representation of the solution of the Dirichlet problem, it is convenient to think first of
the interior problem:eq:2.22F

∆u = 0 in Ω−, (2.22a)

γ−u = β0 (on Γ). (2.22b)

If we represent the solution with a double layer potentialeq:2.22

u = Dψ, (2.23a)

for a density to be determined, the problem is equivalent to the integral equation

−1
2
ψ + Kψ = β0. (2.23b) eq:2.22b

Equation (2.23b) is an example of an integral equation of the second kind. An integral
equation of the second kind is an equation of the form f + Ff = g, where F is an integral
operator. (It is clear that we can modify (2.23b) to have exacly this form.) Note that
once functional analysis is thrown on the collection of integral equations that we will be
dealing with, some equations will be considered of the second kind only in a formal sense,
depending on the properties of the integral operator F. The concept of equation of the
second kind is opposed to the concept of equation of the first kind, which is any integral
equation of the form Ff = g. We have seen this kind of equation before.

The origin of it all. The problem of existence of solution to the Dirichlet problem
for the Laplace equation was one that bugged mathematicians for many decades. This
was way before the arrival of weak derivatives, distributions, Sobolev spaces, and a wide
array of modern mathematical techniques that redefined the question before answering it.
Gauss had the idea of looking for solutions in the form of a double layer potential. With
that he was ensuring that the Laplace equation was being solved, but then existence of
solution was transferred to existence of solution to the integral equation (2.23b). This
ended up being quite a difficult problem for general domains. The theory of integral
equations of the second kind sparked new definitions (Hilbert space, compact operator)
and general theorems (the Fredholm alternative). We will inevitably meet many of these
concepts as we proceed in this course.
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The double layer operator. Let us write equation (2.23b) explicitly

−1

2
ψ(x) +

∫
Γ

(x− y) · ν(y)

2d−1π|x− y|d
ψ(y)dΓ(y) = β0(x), x ∈ Γ. (2.24) eq:2.24

The equation is only imposed on smooth points of the boundary. Consider now the
function

D(x,y) :=
(x− y) · ν(y)

|x− y|2
.

If Γ is smooth enough, this function is continuous, and even smooth. Note that (2.24)
can be written as

−1

2
ψ(x) +

1

2π

∫
Γ

D(x,y)ψ(y)dΓ(y) = β0(x) ∀x ∈ Γ

in the two dimensional case, and

−1

2
ψ(x) +

∫
Γ

D(x,y)

4π|x− y|
ψ(y)dΓ(y) = β0(x) ∀x ∈ Γ

in the three dimensional case. We will do some additional work for the first of the two
equations. It can be seen that the integral operator in the three dimensional case looks
like a smooth non-symmetric variant of the single layer operator.

A Nyström method. Let us focus then in (2.23) for the case of a smooth two dimen-
sional boundary. We equip ourselves with a quadrature formula on Γ:∫

Γ

φ(y)dΓ(y) ≈
N∑
j=1

ωjφ(yj). (2.25) eq:2.25

We then approximate the integral equation (2.23b) using the quadrature formula to ap-
proximate the integral sign:

−1

2
ψh(x) +

N∑
j=1

ωj
2π

(x− yj) · ν(yj)

|x− yj|2
ψh(yj) = β0(x) ∀x ∈ Γ. (2.26) eq:2.26

We then collocate (evaluate) (2.26) on the points x = yi. If we rename ψj := ψh(yj), we
then show that any solution of (2.26) solves

−1

2
ψi +

N∑
j=1

ωj
2π

(yi − yj) · ν(yj)

|yi − yj|2
ψj = β0(yi). (2.27) eq:2.27

This is an N ×N system of linear equations that will, we hope, determine the values ψj.
Once we have them, we can revert (2.26) to define

ψh(x) = −2β0(x) +
N∑
j=1

ωj
π

(x− yj) · ν(yj)

|x− yj|2
ψj ∀x ∈ Γ. (2.28) eq:2.28
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This is a reconstruction formula that defines ψh : Γ → R from its point values. In
summary, if ψh satisfies (2.26), then its point values satisfy (2.27). Reciprocally, if the
values (ψ1, . . . , ψN) satisfy (2.27) and we define ψh with (2.28), then ψh(yj) = ψj and ψh

satisfies (2.26). This is called a Nyström or quadrature method. We remark that diagonal
elements of the matrix in (2.27) need to be evaluated using a limit argument. We will
show explicit formulas in one project below, for the particular case of parametrizable
curves.

Recovering the potential. Once we have computed ψh we have two options for the
potential. We can use uh = Dψh, that is

uh(z) = −2

∫
Γ

(z− y) · ν(y)

2π|z− y|2
β0(y)dΓ(y)

+
N∑
j=1

ωj
π
ψj

∫
Γ

(z− y) · ν(y)

2π|z− y|2
(y − yj) · ν(yj)

|y − yj|2
dΓ(y)

or we can take advantage of the quadrature formula again (2.25) to propose another
approximation

uh(z) =
N∑
j=1

ωj
(z− yj) · ν(yj)

2π|z− yj|2
ψj.

2.5 Literature, exercises, and working projects

1. (Section 1 – Needs analysis) Show that for any ψ ∈ L1(Γ), Dψ ∈ C∞(Rd\Γ) and that
∆u = 0 in Rd \ Γ. (Hint. You can apply Exercise 1.3 to the functions ∂yjEd(x,y)
with densities η νj, where ν = (ν1, ..., νd).)

2. (Section 1) The fundamental solution for the Helmholtz operator u 7→ ∆u+ ω2u is

Ed(x,y) =

{
ı
4
H

(1)
0 (ω|x− y|), (d = 2),

eıω|x−y|

4π|x−y| (d = 3),

where ω > 0 is the frequency or wave number. Find ∇yEd(x,y). Note that the two
dimensional case uses one of the Hankel functions of the first kind.

3. (Section 1) Show that

(Dψ)(z) =
c · z
|z|d

+O(|z|−d), where c =
1

2d−1π

∫
Γ

ϕ(y)ν(y)dΓ(y).

4. (Section 1) Let u = Sη −Dψ. Give formulas for

γ±u, ∂±ν u, [[γu]], [[∂νu]], {{γu}}, {{∂νu}}.

5. (Section 1) Let us take a point x0 ∈ Ω−, and consider the function u(x) = 1/|x−x0|.
Show that it is not possible to represent u as a double layer potential in Ω+.
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6. (Section 3) Give a direct boundary integral formulation based on Green’s identity
for the interior Dirichlet problem.

7. (Section 3) The exterior Dirichlet-to-Neumann operator. Consider the opera-
tor that given β0 solves the exterior Dirichlet problem (2.18) and outputs DtN+β0 :=
∂+
ν u.

(a) Using (2.19)-(2.20) show that DtN+ = V−1(−1
2
I + K).

(b) Using now an indirect method, representing the solution of (2.18) in the form
u = Sη, solve for η and then compute ∂+

ν u with help of the jump relations.
Show that DtN+ = (−1

2
I + Kt)V−1.

(c) Use (a) and (b) to prove that KV = VKt.

8. (Section 3) Following the ideas of the previous exercise, find two formulas for the
interior Dirichlet-to-Neumann operator.

9. (Section 3) Double layer potential and Dirichlet problem. In the two dimen-
sional case, to solve

∆u = 0 in Ω+, γ+u = β0, u = u∞ +O(r−1),

we try with a representation

u = Dψ + u∞, where

∫
Γ

ψ dΓ = 0.

Give a reason for the last condition. Write down the associated integral equation.

10. (Section 3) Double layer potential and Dirichlet problem. In the three di-
mensional case, to solve

∆u = 0 in Ω+, γ+u = β0, u = O(r−1)

where u∞ is unknown, we try with a representation

u = Dψ + cΦ, where

∫
Γ

ψ dΓ = 0, and Φ(z) =
1

|z− x0|
, x0 ∈ Ω−.

Give a reason for the condition on ψ and for the need to include the monopole Φ.
Write down the associated integral equation.
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Project # 2.1 – A Nyström method (coding)

Statement of the problem. This project can be considered as a continuation of
Project # 1.1. We are looking for a numerical solution of the interior Dirichlet prob-
lem for the Laplacian

∆u = 0 in Ω−, γ−u = β0,

where Γ can be parametrized using a 1-periodic function x : R→ R2 with the properties

x(t+ 1) = x(t) ∀t, |x′(t)| 6= 0 ∀t, x(t) 6= x(τ) t− τ 6∈ Z.

The double layer representation and integral equation (2.23) will be given parametric
forms using

β0(t) := β0(x(t)), ψ(t) := ψ(x(t)),

and a non-unit normal vector field

x′(t)⊥ := (x′2(t),−x′1(t)),

assuming that the parametrization is positively oriented. The form of the potential is
then

u(z) =

∫ 1

0

(z− x(τ)) · x′(τ)⊥

2π|z− x(τ)|2
ψ(τ)dτ,

and the integral equation is

−1

2
ψ(t)−

∫ 1

0

(x(t)− x(τ)) · x′(τ)⊥

2π|x(t)− x(τ)|2
ψ(τ)dτ = β0(t) ∀t.

Show that

lim
t→τ

(x(t)− x(τ)) · x′(τ)⊥

2π|x(t)− x(τ)|2
=

x′′(τ) · x′(τ)⊥

4π|x′(τ)|2
.

A Nyström approximation. We then substitute integrals by composite trapezoidal
approximations∫ 1

0

φ(τ) ≈ 1

N

N∑
j=1

φ(tj) =
1

N
(1

2
φ(t0) +

N−1∑
j=1

φ(tj) + 1
2
φ(tN)) tj = j/N.

(Recall that we are dealing with periodic functions.) Using this quadrature formula for the
integral equation and the potential representation, it is simple to obtain a fully discrete
approximation uN(z) for any z ∈ Ω−. Check errors |uN(z)−u(z)| for different geometries
and exact solutions. You will see that the method converges extraordinarily fast.
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Organization. One of the nices features of this simple method is the fact that all
geometric information is contained in the quantities

mj := x(tj), nj := 1
N

x′(tj)
⊥, `j := |x′(tj)|, sj := x′′(tj),

and that the right-hand-side involves the evaluations of β0(x(tj)) = β0(mj).
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Project # 2.2 – A Galerkin direct method (coding)

General setting. This project is a continuation of Project # 1.2. Our goal is to code
the Galerkin equations for a formulation similar to what is given in Section 2.3, in the
two dimensional case. Let then Γ be a closed polygonal curve in the plane, discretized in
elements {T1, . . . , TN}. To solve the exterior Dirichlet problem

∆u = 0 in Ω+,

γ+u = β0 (on Γ),

u = u∞ +O(r−1) as r →∞,

we use a direct formulation (Green’s third identity) to represent the solution

u = Dϕ− Sλ+ u∞, ϕ = β0, λ = ∂+
ν u,

and derive an integral equation from one of Green’s identities:

Vλ− u∞ = −1
2
ϕ+ Kϕ,

∫
Γ

λdΓ = 0.

Handling the discretization. We consider the two following discrete spaces:

Xh := {λh : Γ→ R : λh|Ti ∈ P0(Ti) ∀i},
Yh := {ϕh ∈ C(Γ) : ϕh|Ti ∈ P1(Ti) ∀i}.

The basis functions for Xh are the characteristic functions of the elements: {χ1, . . . , χN}.
There are N nodes, which are numbered in a separate way {v1, . . . ,vN}, and they give
rise to functions

ψi ∈ Yh s.t. ψi(vj) = δij.

The discrete equations. The Galerkin equations are∑
j

Vijλj − uh∞|Ti| = −1
2

∑
j

Mijϕj +
∑
j

Kijϕj, ∀i,
∑
j

|Tj|λj = 0

(see Chapter 1 and in particular Project # 1.1). The computation of Vij and the way of
storing geometric information is explained in Project # 1.1.

Assembly in Yh. We now explain how to compute integrals of the following form

Ij :=

∫
Γ

φ(y)ψj(y)dΓ(y) j = 1, . . . , N. (2.29)
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Assume that for the element T` = [vele(`,1),vele(`,2)] we can find a function φ` such that

φ` ∈ P1(Γ`), φ`(vele(`,1)) = 1, φ`(vele(`,2)) = 0,

and that we have computed the quantities

I
(1)
` =

∫
T`

φ(y)φ`(y)dΓ(y), I
(2)
` =

∫
T`

φ(y)(1− φ`(y))dΓ(y).

The assembly process is a loop that after initializing Ij = 0 for all j, computes

Iele(j,1) = Iele(j,1) + I
(1)
j , Iele(j,2) = Iele(j,2) + I

(2)
j , j = 1, . . . , N.

This process transfers computations done at the element level, and numbered with element
indices, to computations on the entire boundary, counted by vertices.

Applications. Since∫
Tj

φ`(y)dΓ(y) =

∫
Tj

(1− φ`(y))dΓ(y) = 1
2
|T`|δi`,

it is easy to compute now

Mij =

∫
Ti

ψj(y)dΓ(y) =

∫
Γ

χi(y)ψj(y)dΓ(y), ∀i, j.

To compute the matrix related to the double layer operator, we approximate

Kij =

∫
Ti

∫
Γ

(x− y) · ν(y)

2π|x− y|2
ψi(y)dΓ(y)

≈ |Ti|
2

(∫
Γ

(g+
i − y) · ν(y)

2π|g+
i − y|2

ψi(y)dΓ(y) +
(g−i − y) · ν(y)

2π|g−i − y|2
ψi(y)dΓ(y)

)
,

where the two Gaussian points on the element Ti are defined in Project # 1.2. The above
integrals can be computed exactly (see what follows), after some element-by-element
computations and assembly process.

An exact computation. Let e = [v,w] be a segment, let z ∈ R2, and let

` := |w − v|, η := (z− v) · n,

t :=
1

`
(w − v), α := −(z− v) · t,

n := t⊥ = (t2,−t1), β := α + ` = −(z−w) · t.

Let also φ ∈ P1(e) satisfy φ(v) = 1, φ(w) = 0. Then∫
e

(z− y) · ν(y)

|z− y|2

[
φ(y)

1− φ(y)

]
dΓ(y) =

1

`

(
arctan

(
β

η

)
− arctan

(
α

η

))[
β
−α

]
+
η

2`
log

η2 + β2

η2 + α2

[
−1
1

]
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Chapter 3

The Calderón Calculus

chap:3

In this chapter we repeat the presentation of the two layer potentials and four integral
operators associated to the Laplace equation and give arguments for some of their prop-
erties. The point of view is to ignore what the potentials are, and try to work with them
for what properties they satisfy. The presentation is not fully rigorous (function spaces
are still missing), but the arguments that we show here will be the ones used in the rig-
orous proofs in forthcoming chapters. In order to prepare the mindset for this chapter,
let us mention that all the presentation hinges on two important results, with the minor
intrusion of an energy concept:

• We will assume that a certain transmission problem in free space has a unique
solution. We will use it to define the potentials and their associated boundary
integral operators.

• We will assume an integration by parts formula, which we will use to show some
symmetries of the integral operators, as well as some positivity results.

• Finally, we will have a look at the concept of energy that is associated to the
integration by parts formula. This concept will deliver the energy-free solutions
that create some uniqueness issues.

3.1 Layer potentials and transmission problems
sec:3.1

The transmission problem. Let us assume that for given η, ψ : Γ→ R, the problemeq:3.1

∆u = 0 in Rd \ Γ, (3.1a)

[[γu]] = ψ (on Γ), (3.1b)

[[∂νu]] = η (on Γ), (3.1c)

u = O(r−1) at infinity, (3.1d)

admits a unique solution. This fact includes the additional hypothesis of data∫
Γ

η dΓ = 0 when d = 2. (3.2) eq:3.2

40



The solution of (3.1) with ψ = 0 is denoted u = Sη. The solution of (3.1) with η = 0 is
denoted u = Dψ. Because of the superposition principle (all operators in (3.1) are linear
and we are assuming existence and uniqueness of solution), we can write the solution to
(3.1) as

u = Sη −Dψ.

Let us briefly repeat these definitions step by step.

Given η satisfying (3.2), the single layer potential u = Sη is the solution to:eq:3.3

∆u = 0 in Rd \ Γ, (3.3a)

[[γu]] = 0 (on Γ), (3.3b)

[[∂νu]] = η (on Γ), (3.3c)

u = O(r−1) at infinity, (3.3d)

Given ψ, the double layer potential u = Dψ is the solution to:eq:3.4

∆u = 0 in Rd \ Γ, (3.4a)

[[γu]] = −ψ (on Γ), (3.4b)

[[∂νu]] = 0 (on Γ), (3.4c)

u = O(r−1) at infinity, (3.4d)

Energy-free solutions. The energy associated to a function is the quantity

E(u) := 1
2

∫
Rd\Γ
|∇u|2.

If E(u) = 0 and u = O(r−1) at infinity, then it is clear that u ∈ span{χΩ−}. These
functions are the energy free solutions of the problem. They are related to the layer
potentials in the following way. It is clear that ∆χΩ− = 0 in Rd \ Γ, that [[χΩ− ]] = 1 and
[[γ∂νχΩ− ]] = 0. Therefore

D1 = −χΩ− . (3.5)

Jumps. By definition of the layer potentials through problem (3.1), it follows that

[[γSη]] = 0, [[∂νSη]] = η, [[γDψ]] = −ψ, [[∂νDψ]] = 0.

We can write these identities in operator form:[
[[γ·]]
[[∂ν ·]]

] [
−D S

]
=

[
I O
O I

]
=: I. (3.6) eq:3.6
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Averages. The four boundary integral operators are defined as averages of side values
of the layer potentials:

Vη =:{{γSη}} = γ±Sη,

Kψ =:{{γDψ}},
Ktη =:{{∂νSη}},
Wψ =:− {{∂νDψ}} = −∂±ν Dψ.

Mimicking (3.6), we can write[
{{γ·}}
{{∂ν ·}}

] [
−D S

]
=

[
−K V
W Kt

]
=: D, (3.7) eq:3.7

understading now that these equalities are the definitions of the operators on the right-
hand-side. From (3.6) and (3.7), it is also clear that

∂±ν S = ∓1
2
I + Kt, γ±D = ±1

2
I + K.

The representation theorem. Let u satisfy

∆u = 0 in Rd \ Γ, u = O(r−1) at infinity. (3.8) eq:3.8

Then
u = S[[∂νu]]−D[[γu]]. (3.9) eq:3.9

The reason for this to hold is really simple: let η := [[∂νu]] and ψ := [[γu]]. Clearly u and
Sη−Dψ are solutions to (3.1); therefore, they are equal. Implicit to this argument is the
fact that if u satisfies (3.8) and we are in two dimensions, then

∫
Γ
[[∂νu]]dΓ = 0.

3.2 The exterior Calderón projector

Representation theorem for exterior solutions. Let

∆u = 0 in Ω+, u = O(r−1) at infinity. (3.10) eq:3.10

We then extend u by zero to Ω−:

ũ =

{
u in Ω+,
0 in Ω−,

(3.11) eq:3.11

and apply the representation formula (3.9) to ũ:

ũ = S[[∂ν ũ]]−D[[γũ]] = −S∂+
ν u+ Dγ+u. (3.12) eq:3.12

We can rephrase this formula forgetting about the extended function ũ, by simply writing

Dγ+u− S∂+
ν u =

{
u in Ω+,
0 in Ω−.
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Integral identities. There are different ways of reaching the two integral identities
associated to the limiting values of an exterior solution of the Laplace equation (3.10).
We can think in terms of the extended function (3.12) to obtain the identities

1
2
γ+u ={{γũ}} = −V∂+

ν u+ Kγ+u,
1
2
∂+
ν u ={{∂ν ũ}} = −Kt∂+

ν u−Wγ+u.

These equalities follow from (3.12) and the definition of the integral operators as averages
(3.7). Also, we can start with the identity u = Dγ+u − S∂+

ν u, valid in Ω+, take exterior
values from both sides, and show that

γ+u = γ+Dγ+u− γ+S∂+
ν u = 1

2
γ+u+ Kγ+u− V∂+

ν u

∂+
ν u = ∂+

ν Dγ+u− ∂+
ν S∂+

ν u = −Wγ+u+ 1
2
∂+
ν u−Kt∂+

ν u.

For easy reference, let us write the formulas again, after changing some signs:

V∂+
ν u+ (1

2
I−K)γ+u = 0. (3.13a)

(1
2
I + Kt)∂+

ν u+ Wγ+u = 0. (3.13b)

The Calderón projector. We next use the formula[
γ+

∂+
ν

]
= −1

2

[
[[γ·]]
[[∂ν ·]]

]
+

[
{{γ·}}
{{∂ν ·}}

]
together with (3.6) and (3.7) to show that[

γ+

∂+
ν

] [
D −S

]
= 1

2
I− D =

[
1
2
I + K −V
−W 1

2
I−Kt

]
, (3.14) eq:3.14

where we have changed signs in front of single and double layer potentials due to the
change difference between the representation formula for transmission problems (3.9) and
for exterior problems (3.12). The matrix of operators

C+ :=

[
1
2
I + K −V
−W 1

2
I−Kt

]
(3.15)

will be called the exterior Calderón projector, for reasons that we will next see.

The Calderón projector is a projector. We have already seen that if u is an exterior
solution of the Laplacian (3.10), then

C+

[
γ+u
∂+
ν u

]
=

[
γ+u
∂+
ν u

]
.

This means that elements of the set

C := {(γ+u, ∂+
ν u) : u satisfies (3.10)}, (3.16)
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i.e., Cauchy data of solutions of the exterior Laplace equation, are fixed points of C+.
Reciprocally, if

C+

[
ψ
η

]
=

[
ψ
η

]
,

we can define u = Dψ − Sη, which is a solution of (3.10) and note that[
γ+u
∂+
ν u

]
=

[
γ+

∂+
ν

] [
D −S

] [ ψ
η

]
= C+

[
ψ
η

]
=

[
ψ
η

]
,

which shows that the fixed points of C+ are the elements of C. We can think of this
in a slightly different way: we start with general densities (ψ, η), define the potential
u = Dψ − Sη and note that

C+

[
ψ
η

]
=

[
γ+

∂+
ν

] [
D −S

] [ ψ
η

]
=

[
γ+u
∂+
ν u

]
= C+

[
γ+u
∂+
ν u

]
= C+C+

[
ψ
η

]
.

The reader should by now be convinced that we have shown the following two properties:

C2
+ = C+ and rangeC+ = {(γ+u, ∂+

ν u) : u satisfies (3.10)}, (3.17)

or in words, C+ is a projection onto the space of Cauchy data of exterior solutions of the
Laplace equation.

Some identities between the operators. We are now going to exploit the projection
property of C+. To do this, just note that

C+C+ = C+ ⇐⇒ (1
2
I− D)(1

2
I− D) = 1

2
I− D

⇐⇒ 1
4
I− D + D2 = 1

2
I− D

⇐⇒ D2 = 1
4
I,

or in expanded form,[
K2 + VW −KV + VKt

−WK + KtW WV + (Kt)2

]
=

1

4

[
I O
O I

]
. (3.18)

This matrix equality can also be written as a collection of four identities:

VW = 1
2
I−K2, WV = 1

4
I− (Kt)2, (3.19a)

KV = VKt, WK = KtW. (3.19b)

Some readers might recognize one of these formulas from the exercise list in Chapter 2.
We got to it from apparently different arguments.
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3.3 The integration by parts formula

Notation. In order to avoid an excess of integral signs (and in preview of some inner
product style notation for duality products), we will write for functions u, v and vector
fields p,q (all of them defined on a domain Ω)

(u, v)Ω :=

∫
Ω

u v, (p,q)Ω :=

∫
Ω

p · q.

We will also shorten
‖u‖2

Ω := (u, u)Ω, ‖p‖2
Ω := (p,p)Ω.

For functions defined on Γ, we denote

〈η, φ〉Γ :=

∫
Γ

η φ dΓ.

Even if at the present time, this latter integral symbol is just the L2(Γ) inner product,
whenever we find an expression of the kind 〈∂νu, γv〉Γ, which later on will be made corre-
spond to a duality product, we will always place normal derivatives in the first variable.

Around Green’s First Identity. The integration by parts formula we will consider is
a variant of Green’s First Identity, written simultaneously for the domains Ω±: if

∆u = 0 in Rd \ Γ and u = O(r−1) at infinity, (3.20) eq:3.20

then
(∇u,∇v)Rd\Γ = 〈∂−ν u, γ−v〉Γ − 〈∂+

ν u, γ
+v〉Γ. (3.21)

Note how this is formula (2.8) especialized to a harmonic function u, applied in Ω±. The
reason for the negative sign in the term coming from the exterior lies on the sign of the
normal vector field, which is pointing inwards from the point of view of Ω+. Very simple
algebra allows us to write

(∇u,∇v)Rd\Γ = 〈[[∂νu]], γ−v〉Γ + 〈∂+
ν u, [[γv]]〉Γ. (3.22) eq:3.22

If we now aply (3.22) to two functions satisfying (3.20), we obtain

〈[[∂νu]], γ−v〉Γ + 〈∂+
ν u, [[γv]]〉Γ = (∇u,∇v)Rd\Γ = 〈[[∂νv]], γ−u〉Γ + 〈∂+

ν v, [[γu]]〉Γ. (3.23) eq:3.23

Symmetry and positivity of V. Apply now (3.23) to u = Sη and v = Sµ. Then

〈η,Vµ〉Γ = 〈[[∂νu]], γv〉Γ = (∇u,∇v)Rd\Γ = 〈[[∂νv]], γu〉Γ = 〈µ,Vη〉Γ,

which, in formal notation for transposition with respect to the 〈·, ·〉Γ bracket, can be
shortened as Vt = V. Moreover, if η 6= 0,

〈η,Vη〉Γ = ‖∇u‖2
Rd\Γ > 0, (3.24) eq:3.24

since the only energy-free solution of the Laplace equation (see Section 3.1) cannot be
represented as a single layer potential, because it has to jump across Γ.
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Symmetry and positivity of W. Applying (3.23) to u = Dψ and v = Dφ, we obtain

〈Wψ, φ〉Γ = 〈−∂νu,−[[γv]]〉Γ = (∇u,∇v)Rd\Γ = 〈−∂νv,−[[γu]]〉Γ = 〈Wφ, ψ〉Γ,

or Wt = W. The positivity result is not as strong as in the case of the operator V. If
u = Dψ, then

〈Wψ, ψ〉Γ = ‖∇u‖2
Rd\Γ ≥ 0. (3.25) eq:3.25

The gradient is equal to zero only if u is a multiple of χΩ− = −D1, that is, only when ψ ∈
P0(Γ). Note that both (3.24) and (3.25) will be strenghthened to coercivity inequalities
in its due time.

An orthogonality result. Take finally u = Sη and v = Dψ in (3.23). Then

〈[[∂νu]], γ−v〉Γ + 〈∂+
ν u, [[γv]]〉Γ = (∇u,∇v)Rd\Γ = 0.

This proves that single and double layer potentials are orthogonal with respect to the
semi-inner product (∇·,∇·)Rd\Γ. Moreover, we can write this equality in terms of the
densities as

〈η,−1
2
ψ + Kψ〉Γ + 〈1

2
η + Ktη,−ψ〉Γ = 0,

which is equivalent to
〈η,Kψ〉Γ = 〈Ktη, ψ〉Γ,

and thus justifies the notation chosen for Kt. It is important to emphasize that the three
transposition properties we have displayed are given using just this formal definitions
of the potentials as solutions of transmission problems. Two of them (the symmetry of
V and the fact that Kt is the transpose of K) could be seen directly from the integral
definitions of these operators.

3.4 Literature, exercises, and working projects

1. (Section 1) Show that

W1 = 0 and K1 = −1
2
.

2. (Section 2) Show that the kernel of the matrix of operators[
V 1

2
I−Kt

1
2
I + K W

]
is the space {(∂+

ν u, γ
+u) : ∆u = 0 in Ω+, u = O(r−1) at infinity}.

3. (Section 2) The interior Calderón projector. Let

C− :=

[
γ−

∂−ν

] [
−D S

]
.
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Identify the elements of C−, show that

C+ + C− = I

and conclude that C− and C+ are complementary projections. What is the range
of C−?

4. (Section 2) Combined field operators. Consider the followin combined field
potential:

u := (S + cD)η,

where c ∈ R. What are the values of γ+u and ∂+
ν u?

5. (Section 2) Burton-Miller type equation. Let (β0, β1) := (γv, ∂νv) be the
Cauchy data on Γ of a solution of ∆v = 0 in a neighborhood of Ω−. (This im-
plies that ∆v = 0 in Ω− and that the interior and exterior limits of v coincide.) Let
u satisfy

∆u = 0 in Ω+, γ+u+ β0 = 0, u = O(r−1) at infinity.

Show that for any constant c 6= 0

(V + c(1
2
I + Kt))∂+

ν u = −((−1
2
I + K)− cW)β0.

Show that
(V + c(1

2
I + Kt))(∂+

ν + β1) = β0 + cβ1.

6. (Section 3) Show that KV and WK are formally symmetric.

7. (Section 3) Consider the matrix of operators

M+ :=

[
V −1

2
I−Kt

1
2
I + K W

]
.

Show that it is formally positive semidefinite and that its kernel is {0} × P0(Γ). If
u is an exterior solution of the Laplacian, find what

M+

[
∂+
ν u
γ+u

]
is.
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Project # 3.1 – Linear elasticity

The basic concepts. In linear elasticity the main unknown is the displacement field
u. Associated to it we have strain

ε(u) := 1
2
(Du + (Du)>) εij(u) =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
and stress

σ(u) = 2µε(u) + λ(div u)I, σij(u) = 2µεij(u) + λ(div u)δij.

The constants λ, µ are assumed to be positive. Instead of the normal derivative, we
consider the normal stress (or traction) as a boundary relevant quantity σ(u)ν. The
Navier-Lamé equation in absence of volumetric forces is

divσ(u) = 0.

The energy function is

(σ(u), ε(u))Ω =
∑
i,j=1d

(σij(u), εij(u))Ω = 2µ(ε(u), ε(u))Ω + λ‖divu‖2
Ω.

Potentials. We assume that the transmission problem

divσ(u) = 0 in Rd \ Γ,

[[γu]] = ψ (on Γ),

[[σ(u)ν]] = η (on Γ),

u = O(r−1) at infinity,

is uniquely solvable, with the additional restriction∫
Γ

η dΓ = 0 when d = 2.

Potentials and operators are defined using the same strategy as in the case of the Laplace
equation. The associated energy-free solutions are of the form

χΩ−m, m ∈Md,

where the space of rigid motions depends on the space dimension. Its elements are[
a1

a2

]
+

[
0 −b
b 0

] [
x1

x2

]
, if d = 2, a1

a2

a3

+

 0 b1 −b2

b1 0 b3

b2 −b3 0

 x1

x2

x3

 , if d = 3.
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Integration by parts. If divσ(u) = 0 in Rd \ Γ and u = O(r−1) at infinity, then

(σ(u), ε(v))Rd\Γ = 〈σ(u)+ν, γ+v〉Γ − 〈σ(u)−ν, γ−v〉Γ.

Going step by step, derive the entire Calderón Calculus for the homogeneous isotropic
linear elasticity operator.
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