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1 Krylov spaces

Notations. Let H be a complex Hilbert space and A : H → H be an invertible bounded
linear operator. Given f 6= 0 we consider the equation

Au = f.

Krylov subspaces are defined as

W(n) := C〈f,Af, . . . , An−1f〉.

Notice that for all n
W(n) ⊆ W (n+1)

and
AW(n) = C〈Af, A2f, . . . , Anf〉 ⊆ W (n+1).

Proposition If W(n) = W(n+1) then

W(n) = W(n+1) = W(n+2) = . . .

Proof. It is obvious that
W(n+1) = W(n) + C〈Anf〉.

Therefore
W(n+1) = W(n) ⇐⇒ Anf ∈ W (n).

However, if Anf ∈ W (n), then An+1f ∈ AW(n) ⊆ W (n+1), which is equivalent to W(n+2) =
W(n+1). We then proceed by induction. ¤

Proposition If AW(n) = W(n+1), then

AW(k) = W(k+1), ∀k ≥ n.
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Proof. Since
W(n+1) = C〈f〉+ AW(n)

it follows that
W(n+1) = AW(n) ⇐⇒ f ∈ AW(n).

However, AW(n) ⊆ AW(k), for all k ≥ n, and therefore the result is obvious. ¤

Proposition For given n

W(n) = W(n+1) ⇐⇒ AW(n) = W(n+1).

In this case
W(n) = W(n+1) = W(n+2) = . . .

= AW(n) = AW(n+1) = . . .

Proof. (a) If W(n) = W(n+1) we take the minimun value N such that

W(N) = W(N+1).

Then
ANf = α0f + . . . + αN−1A

N−1f.

If α0 = 0, we would hace

A(α1f + . . . + αN−1A
N−2f − AN−1f) = 0

and thus
AN−1f = α1f + . . . + αN−1A

N−2f ∈ W (N−1),

which implies that W(N−1) = W(N), that contradicts our choice of N . Hence α0 6= 0 and

f = −α1

α0

Af − . . .− αN−1

α0

AN−1f + ANf ∈ AW(N) ⊆ AW(n)

and thus W(n+1) = AW(n).
(b) Assume now that W(n+1) = AW(n) and take the minimum value of N such that

W(N+1) = AW(N).

Then f ∈ AW(N) and
f = β1Af + . . . + βNANf

with βN 6= 0 (βN = 0 would give a smaller value of N), so

ANf =
1

βN

f − β1

βN

Af − . . .− βN−1

βN

AN−1f ∈ W(N)

which si equivalent to W(N) = W(N+1) and therefore implies that W(n) = W(n+1). ¤
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Remark. For a given value n

W(n) = W(n+1) ⇐⇒ Anf ∈ W (n)

⇐⇒ f ∈ AW(n)

⇐⇒ AW(n) = W(n+1)

⇐⇒ A−1f ∈ W (n).

In this case we can take the minimum value N that makes all the properties hold and we
have

ANf = α0f + . . . + αN−1A
N−1f, α0 6= 0,

f = β1Af + . . . + βNANf, βN 6= 0.

Notation. Let
N := sup

n
dimW(n).

There are two possibilities:

(a) N = ∞ means that
W(n) (W(n+1), ∀n

or equivalently u = A−1f 6∈ W (n) for all n.

(b) N < ∞ means that W(N) = W(N+1) and

N = inf{n |W (n) = W(n+1)}
Up to this value

dimW(n) = dim AW(n) = n

2 The Galerkin–Krylov discretization

Notations. Let
Pn : H →W(n)

be the orthogonal projection onto W(n) and

An := PnA|W(n) : W(n) →W (n).

Remarks. Notice that since f ∈ W (n) for all n, then Pnf = f . The equation

Anyn = f = Pnf

can be written equivalently as
∣∣∣∣∣

yn ∈ W (n),

〈Ayn, w〉 = 〈f, w〉, ∀w ∈ W (n).

It looks like a Galerkin discretization, but the sequence of spaces depends on the right–
hand side f .
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Proposition If W(N) = W(N+1) (i.e. N < ∞) then:

(a) AwN ∈ W (N) for all wN ∈ W (N).

(b) AN is invertible.

(c) A|W(N) : W(N) →W (N) is and isomorphism.

(d) A−1f ∈ W (N).

In this case, the unique solution to

ANuN = f

is uN = u = A−1f .

Proof. The hypothesis implies that AW(N) = W(N) and we thus have (a) and AN =
A|W(N) . Therefore ker AN ⊆ ker A = 0. Since W(N) is finite dimensional this implies
thatAN is invertible, i.e. (b). The remaining assertions are straightforward. ¤

3 Arnoldi and GMRES iterations

Arnoldi method. It consists of a modified version of the Gram–Schmidt method to
compute an increasing orthonormal system spanning the Krylov spaces:

∣∣∣∣∣∣∣

t1 :=
1

‖f‖ f

tn+1 :=
1

‖(I − Pn)Atn‖ (I − Pn)Atn, n ≥ 1.

If (I − Pn)Atn = 0 the method stops.

Proposition If the method has not stopped at n, then

W(n) = C〈t1, . . . , tn〉

and 〈ti, tj〉 = δij.

Proof. (Induction) If W(n−1) = C〈t1, . . . , tn−1〉, then

W(n) = C〈f〉+ AW(n−1)

= C〈f〉+ C〈At1, . . . , Atn−2, Atn−1〉
= C〈f〉+ AW(n−2) + C〈Atn−1〉
= W(n−1) + C〈Atn−1〉.

Then (I − Pn−1)Atn−1 is orthogonal to W(n−1) and the only remaining step is normaliza-
tion. ¤
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When the method stops. It is simple to check that

(I − Pn)Atn = 0 ⇐⇒ PnAtn = Atn

⇐⇒ Atn ∈ W(n)

⇐⇒ W (n+1) = W(n).

Therefore:

• if N = ∞ the Arnoldi iterations never stop;

• if N < ∞, we can take
tN+1 = tN+2 = . . . = 0.

Proposition For all n
〈Atn, tn+1〉 = ‖(I − Pn)Atn‖.

Proof. If tn+1 6= 0, then

‖(I − Pn)Atn‖ tn+1 = (I − Pn)Atn

and therefore multiplying by tn+1

‖(I − Pn)Atn‖ = 〈Atn, tn+1〉 − 〈PnAtn, tn+1〉 = 〈Atn, tn+1〉,

since tn+1⊥W(n). If tn+1 = 0, both sides of the equality vanish. ¤

GMRES iterations. We define un as the unique solution of

‖f − Aun‖ = min!, un ∈ W (n).

The residual is given by
rn := f − Aun.

Notice that if W(N) = W(N+1), then A−1f = u ∈ W (N) and uN = u, so the iterations can
be stopped. Reciprocally rN = 0 implies that W(N) = W(N+1).

Proposition For all n

(a) rn ∈ W (n+1).

(b) ‖rn−1‖ ≤ ‖rn‖.
(c) rn⊥AW(n).
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Proof. Since rn = f − Aun ∈ f + AW(n) ⊂ W (n+1) the first result is obvious. On the
other hand, since un ∈ W (n) ⊂ W (n+1)

‖rn+1‖ = ‖f − Aun+1‖ ≤ ‖f − Aun‖ = ‖rn‖

which proves the second assertion. Finally, the third statement is classical: the minimiza-
tion process is equivalent to

1

2
(re)〈Aun, Aun〉 − re〈f, Aun〉 = min!, un ∈ W (n)

itself equivalent to ∣∣∣∣∣
un ∈ W (n),

〈Aun, Av〉 = 〈f,Av〉, ∀v ∈ W (n),

or to ∣∣∣∣∣
un ∈ W (n),

〈Aun − f, w〉 = 0, ∀w ∈ AW(n).

¤

4 Residual reduction in GMRES

Notation. Let zn be an orthonormal system such that for all n

AW(n) = C〈z1, . . . , zn〉.

Thus
AW(n+1) = C〈zn+1〉 ⊕ AW(n),

with orthogonal sum. If AW(N) = AW(N+1) (i.e. W(N) = W(N+1)) we take zN+1 =
zN+2 = . . . = 0.

Proposition For all n
rn − rn−1 ∈ C〈zn〉.

Proof. We have

rn − rn−1 = (f − Aun)− (f − Aun−1) = A(un−1 − un) ∈ AW(n).

At the same time

rn⊥AW(n) ⊇ AW(n−1)

rn−1⊥AW(n−1)

∣∣∣∣∣ =⇒ rn − rn−1⊥AW(n−1).

The orthogonal complement of AW(n−1) in AW(n) is C〈zn〉, which finishes the proof. ¤
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Proposition

‖rn‖ = ‖rn−1‖ ⇐⇒ un = un−1.

Proof. Since rn − rn−1 ∈ C〈zn〉, then

rn−1 = rn + γn zn.

However, zn ∈ AW(n) and rn⊥AW(n), from where

‖rn−1‖2 = ‖rn‖2 + |γn|2 ≥ ‖rn‖2.

Equality means that γn = 0 and therefore rn−1 = rn, which implies un−1 = un.

Proposition Assume that zn 6= 0. Then An is singular if and only if Pnzn = 0.

Proof. If An is singular, then there exists 0 6= wn ∈ W (n) such that PnAwn = Pnwn = 0.
Let vn := Awn ∈ AW(n). Then Pnvn = 0 and vn 6= 0. Notice that

vn ∈ AW(n) = C〈zn〉 ⊕ AW(n−1)

(orthogonal sum) and that AW(n−1) ⊆ W (n). Hence

vn = 〈vn, zn〉 zn + Awn−1, wn−1 ∈ W (n−1)

and
0 = 〈vn, zn〉Pnzn + Awn−1

but 〈zn, Awn−1〉 = 0 and therefore Pnzn = 0 and vn ∈ C〈zn〉.
If Pnzn = 0, since zn ∈ AW(n), then zn = Awn with 0 6= wn ∈ W(n). Then

0 = Pnzn = PnAwn = Anwn.

¤

Proposition If An is singular, then:

(a) ‖rn‖ = ‖rn−1‖ (and un = un−1).

(b) |〈tn+1, zn〉| = 1, i.e., zn and tn+1 are proportional.

Proof. Since rn − rn−1 ∈ C〈zn〉 and Pnzn = 0, then

Pnrn = Pnrn−1 = rn−1

(rn−1 ∈ W (n)) and therefore

‖rn−1‖ = ‖Pnrn‖ ≤ ‖rn‖ ≤ ‖rn−1‖.
Since Pnzn = 0 (hence zn⊥W(n)) and zn ∈ AW(n) ⊆ W (n+1), then zn ∈ C〈tn+1〉. Noticing
that both zn and tn+1 hace unit norm, the result follows readily. ¤

7



Remark. Proportionality of tn+1 and zn means that W(n) increases to become W(n+1)

in the same direction as AW(n−1) increased to become AW(n).

Proposition (GMRES as a descent method) If An is inversible and yn is the unique
solution to ∣∣∣∣∣

yn ∈ W(n),

PnAyn = f,

then

un = αnyn + (1− αn)un−1, αn =
‖rn−1‖2

‖f − Ayn‖2 + ‖rn−1‖2
.

Proof. We begin with a simple remark: αn = 1 if and only if Ayn = f , i.e., yn = u = un.
Moreover, Ayn = f if and only if Ayn ∈ W (n). Therefore, eliminating this simple situation
we can assume that αn ∈ (0, 1) and Ayn 6∈ W(n).

Let then vn := αnyn + (1− αn)un−1 ∈ W (n) be defined as above and let

r̂n := f − Ayn.

To demonstrate that vn = un we have to show that f − Avn is orthogonal to AW(n).
Since we have assumed that Ayn 6∈ AW(n−1) ⊂ W (n), then

AW(n) = AW(n−1) ⊕ C〈Ayn〉
= AW(n−1) ⊕ C〈A(un−1 − yn)〉
= AW(n−1) ⊕ C〈r̂n − rn−1〉.

Notice first that

f − Avn = αn(f − Ayn) + (1− αn)(f − Aun−1)

= αnr̂n + (1− αn)rn−1.

By definition of un−1 and yn

f − Ayn⊥W (n) ⊇ AW(n)

f − Aun−1⊥AW(n−1)

∣∣∣∣∣ =⇒ f − Avn⊥AW(n−1),

so we are left to prove that

αnr̂n + (1− αn)rn−1⊥ r̂n − rn−1,

that is (since αn = ‖rn−1‖2/(‖rn−1‖2 + ‖r̂n‖2)),

‖rn−1‖2 r̂n + ‖r̂n‖2 rn−1⊥ r̂n − rn−1,

but
〈r̂n, rn−1〉 = 〈f − Ayn, rn−1〉 = 0

(rn−1 ∈ W (n)), which proves the result. ¤
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Proposition If An is regular and Anyn = f , then

‖rn‖2 =
‖rn−1‖2 ‖r̂n‖2

‖rn−1‖2 + ‖r̂n‖2
, r̂n := f − Ayn.

Then:

• either r̂n = 0 and we have reached the exact solution

• or 0 < ‖rn‖ < ‖rn−1‖.

Proof. Since rn = αnr̂n + (1− αn)rn−1 and 〈r̂n, rn−1〉 = 0 (see the preceding proof), then

‖rn‖2 = |αn|2 ‖r̂n‖2 + |1− αn|2 ‖rn−1‖2

and the result follows readily. ¤

Possibilities in GMRES. Several situations can arise when one does a GMRES iter-
ation (notice that in practice, in finite dimension, one never computes un):

(a) rn−1 = 0; the method has already stopped; An is regular and the Krylov spaces are
not growing any longer.

(b) ‖rn−1‖ = ‖rn‖ 6= 0; in this case un = un−1 6= u, so the method has temporarily
stuck; necessarily An is singular (but Krylov spaces are still growing).

(c) ‖rn‖ < ‖rn−1‖ and necessarily An is regular. Then

‖rn‖ =
‖rn−1‖ ‖r̂n‖√
‖rn−1‖2 + ‖r̂n‖2

.

In particular, it can happen that αn = 1, i.e. r̂n = f − Ayn = 0 and un = yn = u
is the exact solution. This is the only way to get to the exact solution in a finite
number of iterations.

Proposition In all situations

‖rn‖ = |〈tn+1, zn〉| ‖rn−1‖

and
〈tn+1, zn〉 = 〈tn+1, Atn〉〈tn, A−1zn〉.

Proof. If rn−1 = 0, everything cancels in the previous expression (rn, zn and tn+1). If An

is singular then ‖rn‖ = ‖rn−1‖ (see the discussion above) but also |〈tn+1, zn〉| = 1, because
these elements are parallel and have unit norm.

We then have to prove that, if An is regular (and rn−1 6= 0), then

|〈tn+1, zn〉|2 =
‖r̂n‖2

‖rn−1‖2 + ‖r̂n‖2
.
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This result is a consequence of the following facts: (a) r̂n − rn−1 = A(un−1 − yn) belongs
to AW(n) and is orthogonal to AW(n−1) and hence

r̂n − rn−1 ∈ C〈zn〉;
(b) r̂n = f − Ayn ∈ W (n+1) and is orthogonal (by definition) to W(n), so

r̂n ∈ C〈tn+1〉;
(c) tn+1 is orthogonal to rn−1 ∈ W(n). Then

‖r̂n‖ (b)
= |〈tn+1, r̂n〉|
(c)
= |〈tn+1, r̂n − rn−1〉|
(a)
= |〈tn+1, zn〉| ‖r̂n − rn−1‖

(b,c)
= |〈tn+1, zn〉|

(‖r̂n‖2 + ‖rn−1‖2
)1/2

.

For the last part, we notice that A−1zn ∈ W (n) and that {t1, . . . , tk} is an orthonormal
basis for W(k), so

A−1zn − 〈A−1zn, tn〉tn ∈ W (n−1)

and
zn − 〈A−1zn, tn〉Atn ∈ AW(n−1) ⊂ W (n).

Hence
〈tn+1, zn〉 = 〈tn+1, Atn〉〈tn, A−1zn〉.

¤

5 Equations of the second kind

Proposition If A = λI + K with λ 6= 0 and K compact, then:

(a) |〈tn+1, zn〉| → 0.

(b) An is invertible for n large enough.

(c) un → u.

Proof. By the previous results,

|〈tn+1, zn〉| ≤ ‖A−1‖ |〈tn+1, Atn〉|
but (see the recursion to compute tn+1

|〈tn+1, Atn〉| = ‖(I − Pn)Atn‖ = ‖(I − Pn)Ktn‖ ≤ ‖Ktn‖.
Since tn is an orthonormal sequence, then Ktn → 0, which proves (a). This proves that
|〈tn+1, zn〉| < 1 for n large enough and then An has to be regular.

10



Finally 0 ≤ ‖rn‖ ≤ ‖rn−1‖ and

‖rn−1‖
‖rn‖ = |〈tn+1, zn〉| → 0

which implies that ‖rn‖ → 0 (it has to converge and it cannot converge to a positive
value). ¤

Proposition For all n

‖rn‖ ≤ ‖A−1‖nσ1(K) . . . σn(K)‖f‖.
Proof. It is clear that

‖rn‖ = |〈tn+1, zn〉| ‖rn−1‖
= |〈tn+1, zn〉 . . . 〈t2, z1〉| ‖f‖
≤ ‖A−1‖n |〈tn+1, Atn〉, . . . , 〈t2, At1〉| ‖f‖.

We now also that
〈tj+1, Ati〉 = 〈tj+1, Kti〉

and that
Ati ∈ AW(i) ⊂ W (i+1)⊥ tj+1, j ≥ i

son the matrix 〈tj+1, Ati〉 is lower triangular. The corresponding finite dimensional oper-
ator is Kn := PnK(Pn+1 − P1) and

|〈tn+1, Atn〉, . . . , 〈t2, At1〉| = | det(〈tj+1, Ati〉)| = σ1(Kn) . . . σn(Kn) ≤ σ1(K) . . . σn(K).

6 Preconditioned Petrov–Galerkin methods

Problem. Let V : H → Ĥ be invertible and K : H → Ĥ be compact and assume
that V + K is invertible (which is equivalent to its being one–to–one). We consider two
sequences (directed in a parameter h → 0) of finite dimensional subspaces

Hh ⊂ H, Ĥh ⊂ Ĥ, dim Hh = dim Ĥh

and the discrete equations
∣∣∣∣∣

uh ∈ Hh,

〈(V + K)uh, rh〉 = 〈f, rh〉, ∀rh ∈ Ĥh.

We assume that the Petrov–Galerkin method given above is convergent, i.e. uh → u =
(V + K)−1f (for all f). Let Qh : Ĥ → Ĥh be the orthogonal projection onto Ĥh. Notice
that

Qh(V + K)uh = Qhf.

Let finally Vh := QhV |Hh
. We intend to solve with GMRES the preconditioned system

uh + V −1
h QhKuh = Qhf.
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Proposition There exists β > 0 independent of h and f such that

‖rh
n‖ ≤ βnσ1(K) . . . σn(K)‖f‖.

Proof. From the convergence of the method (and the independence of this concept with
respect to compact perturbations), it follows that there exists α > 0 such that

sup
06=uh∈Hh

|〈V uh, rh〉|
‖uh‖ ≥ α‖rh‖, ∀rh ∈ Ĥh,

sup
06=uh∈Hh

|〈(V + K)uh, rh〉|
‖uh‖ ≥ α‖rh‖, ∀rh ∈ Ĥh

If Kh := QhK|Hh
: Hh → Ĥh, then

‖V −1
h ‖ ≤ 1/α, ‖(Vh + Kh)

−1‖ ≤ 1/α.

Let Rh := V −1
h QhK : H → H, which is compact. Then we are applying GMRES to

the infinite dimensional system

(I + Rh)uh = Qhf.

(However, the method will stop after at most N = dimHh iterations, since it is equivalent
to a finite dimensional system). Then

‖rh
n‖ ≤ ‖(I + Rh)

−1‖nσ1(Rh) . . . σn(Rh)‖Qhf‖.
To end the proof, we simple note that: (a) ‖Qhf‖ ≤ ‖f‖; (b) for all j and h

σj(Rh) ≤ ‖V −1
h ‖ ‖Qh‖σj(K) ≤ (1/α)σj(K);

(c) for all h
‖(I + Rh)

−1‖ = ‖(Vh + Kh)
−1Vh‖ ≤ ‖V ‖/α.

¤

7 Appendix

7.1 Singular values of compact operators

Proposition (Rayleigh quotients) Let V be a compact self–adjoint positive operator:

V :=
∞∑

n=1

λn〈 · , φn〉φn,

with λn ≥ λn+1 > 0 and φn orthonormal. Let

Tn := C〈φ1, . . . , φn〉.
Then

sup
0 6=ψ∈T⊥n

〈V ψ, ψ〉
‖ψ‖2

= λn+1 ≤ sup
06=ψ∈X⊥

n

〈V ψ, ψ〉
‖ψ‖2

if dim Xn ≤ n.

Proof. The first equality is straightforward. For the second one, take 0 6= ψ ∈ Tn+1 ∩X⊥
n .

¤
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Singular value decomposition. K : H → Ĥ is compact if and only if

K =
∞∑

j=1

σj 〈 · , φj〉ψj

with σj > 0 non–increasing and {φj}, {ψj} orthonormal. We denote σn(K) to the singular
values of K. Notice that for all subspace Xn such that dim Xn ≤ n

σn+1(K) ≤ sup
06=φ∈X⊥

n

|(Kφ, Kφ)|
‖φ‖2

with equality attained with Tn := C〈φ1, . . . , φn〉.

Proposition If K is compact and A is bounded

σn(AK) ≤ ‖A‖σn(K), ∀n.

and
σn(KA) ≤ ‖A‖σn(K), ∀n.

Proof. For the first singular value we can bound

σ1(AK)2 = sup
06=φ∈H

|(AKφ, AKφ)|
‖φ‖2

≤ ‖A‖2 sup
06=φ∈H

|(Kφ, Kφ)|
‖φ‖2

= ‖A‖2σ1(K)2.

For the remaining ones

σn+1(K)2 = sup
0 6=φ∈T⊥n

|(Kφ,Kφ)|
‖φ‖2

≥ ‖A‖−2 sup
06=φ∈T⊥n

|(AKφ, AKφ)|
‖φ‖2

≥ ‖A‖−2σn+1(AK)2.

Finally
σn(KA) = σn((KA)∗) = σn(A∗K∗) ≤ ‖A∗‖σn(K∗) = ‖A‖σn(K).

¤

Proposition If A is an isomorphism and K is compact, then

(1/‖A−1‖)σn(K) ≤ σn(AK) ≤ ‖A‖σn(K).

Proof. It is a simple consequence of the previous result:

σn(K) = σn(A−1AK) ≤ ‖A−1‖σn(AK).

¤
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7.2 Generalized SVD

Riesz bases. A sequence {ψn} is a Riesz basis for H if there exists an isomorphism
A : H → H and a Hilbert basis {φn} such that

ψn = Aφn, ∀n.

Proposition Let {ψn} be a Riesz basis of H. Then:

(a) There exist C1, C2 > 0 such that

C1‖u‖2 ≤
∞∑

n=1

|〈u, ψn〉|2 ≤ C2‖u‖2, ∀u ∈ H.

(b) C〈ψn |n ≥ 1〉 is dense in H.

(c) There exists another Riesz basis {ηn} (conjugate Riesz basis) such that

〈ψm, ηn〉 = δnm

Moreover, for all u ∈ H,

u =
∞∑

n=1

〈u, ηn〉ψn.

Proof. Let ψn = Aφn with A isomorphism and φn Hilbert basis. Then

∑
n

|〈u, ψn〉|2 =
∑

n

|〈A∗u, φn〉|2 = ‖A∗u‖2, ∀u ∈ H.

The first result holds then with C1 = 1/‖A−1‖ and C2 = ‖A‖. The second one is
straightforward. The conjugate basis is defined by

ηn := (A−1)∗φn

and

u = A A−1u = A

(∑
n

〈A−1u, φn〉φn

)
=

∑
n

〈u, (A−1)∗φn〉Aφn,

which proves the results. ¤

Proposition K : H → Ĥ is compact if and only if there exist two Riesz bases {φn} and

{ψn} (of H and Ĥ respectively) and a sequence of positive non–increasing values σn → 0
such that

K =
∞∑

n=1

σn〈 · , φn〉ψn.

Moreover, there exist α1, α2 > 0 such that

α1σn ≤ σn(K) ≤ α2σn, ∀n.
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Proof. Equivalence of compactness and the series form above is straightforward. There
exist isomorphisms A : H → H and B : Ĥ → Ĥ such that A−1φn =: φ̃n and B−1ψn =: ψ̃n

are Hilbert bases. Then K = BK0A where

K0 =
∑

n

σn〈 · , φ̃n〉ψ̃n, , σn = σn(K0),

and
(1/‖A−1‖ ‖B−1‖)σn ≤ σn(AK0B) = σn(K) ≤ ‖A‖ ‖B‖σn.

¤

7.3 Singular values of bounded operators

Proposition Let

K =
∑

n

σn〈 · , φn〉ψn

be a compact operator (given by its SVD). Then

σn+1(K) = ‖K −Kn‖, Kn :=
n∑

j=1

σj〈 · , φj〉ψj

and
σn+1(K) ≤ ‖K − Cn‖

for all Cn linear such that dimR(Cn) ≤ n.

Proof. If dimR(Cn) ≤ n, there exists 0 6= φ ∈ C〈φ1, . . . , φn+1〉 such that Cnφ = 0. Then

‖Kφ− Cnφ‖2 = ‖Kφ‖2 =
n+1∑
j=1

σj|〈φ, φj〉|2 ≤ σ2
n+1‖φ‖2

and therefore ‖K − Cn‖ ≥ σn+1. ¤

Definition. Let A be bounded. We define for all n ≥ 0

σn+1(A) := inf{‖A− An‖ | dimR(An) ≤ n}.

Notice that σ1(A) = ‖A‖ and

0 ≤ σn(A) ≤ σn−1(A) ≤ ‖A‖, ∀n.

Moreover σn(A) → 0 if and only if A is compact. Otherwise

σn(A) → σ∞ > 0.

Finally σn(A) = σn(A∗).
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Proposition If A is an isomorphism, then

1/‖A−1‖ ≤ σn(A) ≤ ‖A‖, ∀n.

Therefore, if A is an isometric isomorphism, then σn(A) = 1 for all n.

Proof. If dimR(An) < ∞, we take

0 6= v ∈ R(AnA
−1)⊥, u = A−1v

and notice that

‖Au− Anu‖2 = ‖v − AnA
−1v‖2

= ‖v‖2 + ‖AnA
−1v‖2

≥ ‖v‖2 = ‖Au‖2 ≥ (1/‖A−1‖2)‖u‖2.

Therefore ‖A− An ≥ 1/‖A−1‖ for all An with finite rank. ¤

Proposition Let A and B be bounded operators. Then

σn(AB) ≤ ‖A‖σn(B), ∀n.

Proof. If Bn has n−dimensional range, then

‖A‖ ‖B −Bn‖ ≥ ‖AB − ABn‖ ≥ σn+1(AB)

and we can take the infimum in the left–hand side. ¤

Proposition If A is invertible

(1/‖A‖2)σn(A) ≤ σn(A−1) ≤ ‖A−1‖2σn(A), ∀n.

Proof. Let dimR(An) ≤ n. Then dimR(A−1AnA−1) ≤ n and

σn+1(A
−1) ≤ ‖A−1 − A−1AnA−1‖ ≤ ‖A−1‖ ‖A− An‖ ‖A−1‖

and taking the infimum we obtain

σn+1(A
−1) ≤ ‖A−1‖2 σn+1(A).

¤

Remark. If K is compact

σn(I + K) ≤ 1 + σn(K).

Proof. Taking Kn (the n−th section of K) we prove that

σn+1(I + K) ≤ ‖I + K −Kn‖ ≤ 1 + ‖K −Kn‖ = 1 + σn+1(K).

¤
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7.4 Finite rank operators and matrices

Situation. Consider two finite dimensional spaces HN and ĤM and respective orthonor-
mal bases of them: {φ̃i} and {ψ̃i}. Consider the matrix

A = (aij) = (〈Aφ̃i, ψ̃j〉)
Proposition For all n

σn(A) = σn(A).

Proof. Consider the SVD of A = QΣP∗. It is simple to see that for all u ∈ HN

Au =
∑

j

〈Au, ψ̃j〉ψ̃j

=
∑
i,j

〈Aφ̃i, ψ̃j〉〈u, φ̃i〉ψ̃j

=
∑
i,j

aij〈u, φ̃i〉ψ̃j

=
∑

i,j,k

〈u, φ̃i〉pikσkqkjψ̃j

=
∑

k

〈u, φk〉σkψk.

where
ψk :=

∑
j

qkjψ̃j, φk :=
∑

i

pkiφ̃i

are orthonormal bases. The last expression is the SVD for the operator A. ¤

Remark.. For every square matrix

| detA| = σ1(A) . . . σn(A).
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