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1 Krylov spaces

Notations. Let H be a complex Hilbert space and A : H — H be an invertible bounded
linear operator. Given f # 0 we consider the equation

Au = f.
Krylov subspaces are defined as
W = C(f, Af, ..., A"7Lf).

Notice that for all n
W(n) C W ntl)

and

AWM = C(Af, A% f, ... A" f) C WD),
Proposition If W™ = W@+ then
wm — yht+l) —yn+2) — -

Proof. 1t is obvious that

Therefore
Wt — —  A"fewn.

However, if A"f € W, then A"*'f € AW®™ C WD which is equivalent to W"+?) =
WOHD - We then proceed by induction. O

Proposition If AW®™ = WO+ then

AWE = Wkt oy >,



Proof. Since

WD = C(f) + AW™

it follows that
Wt = gy — fe AWm,

However, AW C AW(k), for all k£ > n, and therefore the result is obvious. OJ
Proposition For given n
W =Wt e AWM = D),

In this case

wm  — Wht) — n+2)
— AWM — AWt —
Proof. (a) If W™ = W+ we take the minimun value N such that
W) — W+

Then
ANf = Oé()f + ...+ OéN_lANilf.

If ag = 0, we would hace
Alarf +... +ay_ AN 2 — AN ) =0

and thus
AN_lf = Oélf + ...+ OzN_lAN_Qf € W(N_l),

which implies that W®=1 = W) that contradicts our choice of N. Hence ay # 0 and

F=Map o S ONZL AN AN e AW C A
(o) Qp

and thus W) = AWw®,
(b) Assume now that W+ = AWM and take the minimum value of N such that

WD — AW,

Then f € AWW) and
f=0Af+...+ BvAYf

with Gy # 0 (By = 0 would give a smaller value of N), so

1 b By-1 -
AVf=—f—-2Af— . AN ey
f 6N f BN f ﬁ]v f
which si equivalent to W) = W+ and therefore implies that W™ = W+, H



Remark. For a given value n

In this case we can take the minimum value N that makes all the properties hold and we
have

ANf = Ozof + Ce + OéN_lAN_lf, (%)) 7é O,
f = BiAf+... +BnAYY, By # 0.
Notation. Let
N := sup dim W™,
There are two possibilities:

(a) N = oo means that

W) C woth, vn
or equivalently uv = A~ f € W™ for all n.
(b) N < oo means that W) = W+ and
N = inf{n | W = Wy

Up to this value
dim W™ = dim AW™ = n

2 The Galerkin—Krylov discretization

Notations. Let
P,: H—wW®

be the orthogonal projection onto W™ and
A, = Py Al - WO — W),

Remarks. Notice that since f € W™ for all n, then P,f = f. The equation
Anyn = [ = Puf
can be written equivalently as
Yn € W,
(Ayp, w) = (f,w), Vw € WM,

It looks like a Galerkin discretization, but the sequence of spaces depends on the right—

hand side f.



Proposition [f W) = WNHD (e, N < 00) then:
(a) Awy € W) for all wy € W),
(b) Ay is invertible.
(c) Al : W — W) s and isomorphism.
(d) A7Lf e Wi,
In this case, the unique solution to
Anuy = f
isuy =u=A"1f.

Proof. The hypothesis implies that AWW) = W) and we thus have (a) and Ay =
Al . Therefore ker Ay C ker A = 0. Since WW) ig finite dimensional this implies
that Ay is invertible, i.e. (b). The remaining assertions are straightforward. O

3 Arnoldi and GMRES iterations

Arnoldi method. It consists of a modified version of the Gram—Schmidt method to
compute an increasing orthonormal system spanning the Krylov spaces:

ty: !
1= T
il

thil =
T = P)AL

(I — P,)At,, n> 1.

If (I — P,)At, = 0 the method stops.

Proposition If the method has not stopped at n, then
W™ = Clty,...,t,)

and (t;, t;) = d;;.

Proof. (Induction) If W™=Y = C(t,...,t, 1), then

W = C(f) + AW
= C{(f)+ C(Aty,..., At,_o, At, 1)
= C(f) + AW L C(At, ;)
W 4 C(At, ).

Then (I — P,_1)At,_; is orthogonal to W1 and the only remaining step is normaliza-
tion. 0



When the method stops. It is simple to check that

(I = P)At, =0 <= P,At, = At,,
— At, e WW
= Wit =y,

Therefore:
e if N = oo the Arnoldi iterations never stop;

e if N < oo, we can take
tN+1:tN+2:...:O.

Proposition For all n
(Atn, tnia) = [|(1 = Po) Atn]].

Proof. 1f t, 1 # 0, then
(I = P,)At,||tni1 = (I — P,)At,
and therefore multiplying by ¢,
(I = Pa)Atn || = (Aly, tni1) — (PrAtn, tri1) = (Aly, tasa),

since t,41 LW, If ¢, = 0, both sides of the equality vanish. 0J

GMRES iterations. We define u,, as the unique solution of
| f — Auy|| = min!, u, € WM.

The residual is given by
Ty = f — Auy,.

Notice that if W) = WO+ then A~ f = u € W) and uy = u, so the iterations can
be stopped. Reciprocally 7y = 0 implies that W) = yyO+1),

Proposition For all n
(a) r, € Wb,
(b) [lrnall < flrall-
(c) 7, L AWM.



Proof. Since 1, = f — Au,, € f + AW C WD the first result is obvious. On the
other hand, since u,, € W™ c W+l

Irniall = I1f = Aunga | < |1f = Aunl| = [I7a]

which proves the second assertion. Finally, the third statement is classical: the minimiza-
tion process is equivalent to

1
§(re)(Aun, Auy) —re(f, Au,) = min!, u, € W

itself equivalent to
Uy, € W(”)7

(Au,, Av) = (f, Av), Yo e W™,

or to
Uy, € W("),

(Au, — f,w) =0, Yw € AWM,

4 Residual reduction in GMRES
Notation. Let z, be an orthonormal system such that for all n
AWM = Clzy,. .., 2,).

Thus
AW = Clz,0y) ® AW,

with orthogonal sum. If AW®) = AWV (e W = WD) we take 2y, =
EAN42 = ... = 0.

Proposition For alln
Tn —Tno1 € C(z,).

Proof. We have
T — a1 = (f — Auy) — (f — Atp_1) = A(tp_1 — u,) € AWM.
At the same time

rp L AW > AW

— =T LAWETY,
Tn—1 L AW(n_l)

The orthogonal complement of AW in AW™ is C(z,), which finishes the proof. [



Proposition
[rull = lrnaall - =t =una.
Proof. Since r, —r,_1 € C(z,), then
Tn-1 = "Tn + Vn 2n-
However, z, € AW®™ and r, L AW®™ from where
lrall® = llrall® + Iyl = llrall®.
Equality means that v, = 0 and therefore r,,_y = r,, which implies u,,_1 = u,,.
Proposition Assume that z, # 0. Then A, is singular if and only if P,z, = 0.

Proof. If A,, is singular, then there exists 0 # w, € W™ such that P,Aw, = P,w, = 0.
Let v, := Aw, € AW®™_ Then P,v, = 0 and v,, # 0. Notice that

v, € AWM = C(z,) ® AWV
(orthogonal sum) and that AW~ C W™, Hence
Un = (Un, 20) 20 + Awn1,  wy_g € WY

and
0= <Un7 Zn>PnZn + Awn—l

but (z,, Aw,_1) = 0 and therefore P, z, = 0 and v,, € C(z,).
If P,z, =0, since z, € AW®™, then z, = Aw, with 0 # w,, € W™ . Then

0= P,z, = P, Aw,, = A, w,.

Proposition If A, is singular, then:
(@) [lrall = llrn-all (and wp = un—y).
(b) |{tni1,2n)| =1, i.e., 2z, and t,.1 are proportional.
Proof. Since r,, — r,—1 € C(z,) and P,z, = 0, then
Poryn=Pyrp_1 =7p1
(rn_1 € W™) and therefore
[Pa-1ll = 1 Parall < lrall < rn-all-

Since Pz, = 0 (hence z, L W™) and z, € AW®™ C WD then z, € C(t,41). Noticing
that both z, and ¢,,,; hace unit norm, the result follows readily. O



Remark. Proportionality of ¢,,1 and z, means that W increases to become W1
in the same direction as AW™~1 increased to become AWM.

Proposition (GMRES as a descent method) If A, is inversible and y,, is the unique
solution to

Yo € W,
PnAyn = fv

then )
[y

= Agall? A+ a2

Up = CpYp + (1 - O‘n)unfb (7%

Proof. We begin with a simple remark: «,, = 1 if and only if Ay, = f, i.e., y, = u = u,.
Moreover, Ay, = f if and only if Ay, € W . Therefore, eliminating this simple situation
we can assume that «,, € (0,1) and Ay, ¢ W™,

Let then v, := apy, + (1 — ap)u, 1 € W) be defined as above and let

= f — Ayp.

To demonstrate that v, = u, we have to show that f — Awv, is orthogonal to AW,
Since we have assumed that Ay, ¢ AWTY c W then

AWM = AWCD ¢ C(Ay,)
= AW @ ClA(Up—1 — yn))
= AWV g CE, —rny).

Notice first that

f—=Av, = an(f — Ayn) + (1 — an)(f — Aup1)
= a7+ (1 —ay)rp_1.

By definition of u,,_, and vy,
f = Ay, LWM 2 At
— = Av, L AW,
f— Aup,_y L AW
so we are left to prove that
O‘n?n + (1 - an)rn—l J—?n — Th—1,

that is (since oz, = [[ra—1[*/(lrail® + [7al*)),

Hrn71||2 ?n + H%\nH2 Tn—1 J—?n — Tp—1,

but
<?nvrn—1> = <f - Aynarn—1> =0
(rn_1 € W™), which proves the result. U



Proposition If A, is reqular and Ay, = f, then

o lraalP N7 ~
ral|l® = — Tn = f — Ay,.
|| TLH ||rn_1||2+ ||Tn||27 n f yn

Then:
o cither 1, = 0 and we have reached the exact solution
o or 0 < ||| < ||rn-1]l-
Proof. Since r,, = a7y, + (1 — a)rp_q and (7, 7,_1) = 0 (see the preceding proof), then
Irall? = low? I[Pl + |1 = anl® [l

and the result follows readily. 0

Possibilities in GMRES. Several situations can arise when one does a GMRES iter-
ation (notice that in practice, in finite dimension, one never computes u,):

(a) r,—1 = 0; the method has already stopped; A, is regular and the Krylov spaces are
not growing any longer.

(b) ||rn_1ll = ||rn]] # 0; in this case u, = u,_1 # u, so the method has temporarily
stuck; necessarily A, is singular (but Krylov spaces are still growing).

(¢) ||7nll < |lrn-1]] and necessarily A, is regular. Then

ol lI7all
Vira-l? + 17112

In particular, it can happen that o, = 1, ie. 7, = f — Ay, = 0 and u,, = y, = u
is the exact solution. This is the only way to get to the exact solution in a finite
number of iterations.

lrall =

Proposition In all situations

lrall = [tnsrs 2n) [ I7nall

and
<tn+la Zn) = <tn+1> Atn) <tn7 A_1Zn>-

Proof. 1f r,_; = 0, everything cancels in the previous expression (7, z, and t,.1). If A,
is singular then ||r,|| = ||7._1]| (see the discussion above) but also |{t,11, z,)| = 1, because
these elements are parallel and have unit norm.

We then have to prove that, if A, is regular (and r,_; # 0), then

(a2t = il
SR N e AT

9



This result is a consequence of the following facts: (a) 7, — r,,—1 = A(u,—1 — ) belongs
to AW®™ and is orthogonal to AW™~1 and hence

T — Tn-1 € C(z,);
(b) 7 = f — Ay, € WD and is orthogonal (by definition) to W™, so
?n S (C<tn+1>;

(¢) tny1 is orthogonal to r,_; € W™, Then

—~
=

7all = {1, 7))

—
gl
~

tn—l—l; Tn Tn—1>|

—
o
N2

tnrs Zn) [ [P0 = Tna|

(
nt1s Zn)| (Pl + 7

I
I
I
"

g

2)1/2.

For the last part, we notice that A~'z, € W™ and that {t,...,#;} is an orthonormal
basis for W®)

Az, — (A 2t € WD

and

— (A7 2, 1) At € AWTTD c W

Hence
<tn+1; Zn> = <tn+17 Atn) <tn7 A712n>-

5 Equations of the second kind

Proposition If A=\ + K with A # 0 and K compact, then:

(@) [{tn+1,20)| — 0.

(b) A, is invertible for n large enough.

(¢) up, — u.
Proof. By the previous results,

[{tns1, 20 < AT {tngr, Ati)|
but (see the recursion to compute ¢,
|<tn+1aAtn>| = H(I - PN)Ath = H(] - Pn)Kth < HKtn”

Since t,, is an orthonormal sequence, then Kt, — 0, which proves (a). This proves that
|{(tns1, 2n)| < 1 for n large enough and then A,, has to be regular.

10



Finally 0 < [[r,,|| < |71 and

= [{tns1, 2n)[ = 0

which implies that ||r,|| — 0 (it has to converge and it cannot converge to a positive
value). O

Proposition For alln

lrall < NATH" o1 (K) - . o (K| FI-
Proof. 1t is clear that
Il = {1, 20) | 1701

{1, 2n) - (2, 20)| ([l
TATH™ [{tnsa, Ata), -, (b2, Atn)] S]]

IN

We now also that
(tjy1, Ati) = (tj41, Kti)
and that . .
At; € AWD c WD 1t >

son the matrix (¢;41, At;) is lower triangular. The corresponding finite dimensional oper-
ator is K, := P,K(P,1 — P1) and

{tsrs Aty), ... (o, A = | det((tj1, ALY = 01 (Ky) . .. 0n(EKy) < 01(K) . .. on(K).

6 Preconditioned Petrov—Galerkin methods

Problem. Let V : H — H be invertible and K : H — H be compact and assume
that V + K is invertible (which is equivalent to its being one-to-one). We consider two
sequences (directed in a parameter h — 0) of finite dimensional subspaces

H,CcH  Hy,cH, dimH,=dimH,
and the discrete equations
up € Hp,
(V + K)up, ) = (f,rm),  Vri € Hy.

We assume that the Petrov-Galerkin method given above is convergent, i.e. u, — u =
(V 4+ K)7'f (for all f). Let Q) : H — Hy, be the orthogonal projection onto Hy,. Notice
that

Qn(V + K)up = Qunf.
Let finally V}, := QpV|n,. We intend to solve with GMRES the preconditioned system

up, + Vh_lQhKuh = Qnf.

11



Proposition There exists 3 > 0 independent of h and f such that
lrall < B o (K) ... on(K)| £l

Proof. From the convergence of the method (and the independence of this concept with
respect to compact perturbations), it follows that there exists az > 0 such that

Vv .
sup Wl 5 et € B,
0Aup€Hp HuhH
V+K .
ap HOEEN T Gy v e
0#up€Hy, HuhH
If Kp, = QhK’Hh c Hy — ﬁh, then
Vil <o, [(Vi+ K7 < 1/

Let Ry, := Vh_lQhK : H — H, which is compact. Then we are applying GMRES to
the infinite dimensional system

(I + Rp)up = Qnf.

(However, the method will stop after at most N = dimH}, iterations, since it is equivalent
to a finite dimensional system). Then

lrall < I+ Ra) =01 (Ba) - ou(Ri)1Qn f 1.
To end the proof, we simple note that: (a) ||Qnf|| < ||f|l; (b) for all j and h
o;(Br) < IV ' HIQull 05(K) < (1/a)o;(K);

(c) for all h
(1 + Rp) M| = [[(Vi + i) "' VAl < [V ]|/ e

7 Appendix

7.1 Singular values of compact operators

Proposition (Rayleigh quotients) Let V' be a compact self-adjoint positive operator:

V= Z;)\n< . 7¢n>¢m

with A\, > Apy1 > 0 and ¢, orthonormal. Let

Tn = C<¢17 ey ¢n>
ther Ve, v) (Ve v)
sup L =\ < sup ’
0£YeTE kuz ! 0£YeX - Hw| 2
of dim X, < n.

Proof. The first equality is straightforward. For the second one, take 0 # ¢ € T, N X1 .
O

12



Singular value decomposition. K : H — H is compact if and only if
K= 0; (- 0¥
j=1

with o; > 0 non-increasing and {¢; }, {¢;} orthonormal. We denote o,,(K) to the singular
values of K. Notice that for all subspace X,, such that dim X,, <n

on1(K) < sup w
ozoext |9l

with equality attained with T,, ;== C(¢y, ..., ¢n).
Proposition If K is compact and A is bounded
on(AK) < Al on(K),  Vn.

and
on(KA) < ||A]on(K),  Vn.

Proof. For the first singular value we can bound

Ul(AK)zz sup |(AK¢’AK¢)’ S ||AH2 sup |(K¢7K¢)|

= |A|Po1 (K)>.
0£pEH ol ozper  ||9l?

For the remaining ones

Ko, Ko _ AK¢, AK ¢
0n+1(K)2 = sup |( (b : )| 2 ”AH 2 sup |( - )|
0#£peT- H¢H 0#£¢peT- H¢”

> || A 200i (AK)2
Finally

on(KA) = on((KA)") = 0n(ATK") < [[A™[| 0 (K7) = [|Al| 00 (K).

Proposition If A is an isomorphism and K is compact, then
(1/[[AH Don(K) < on(AK) < [|Allo,(K).
Proof. 1t is a simple consequence of the previous result:

oK) = 0, (A AK) < ||A7Y| 0, (AK).

13



7.2 (Generalized SVD

Riesz bases. A sequence {1,} is a Riesz basis for H if there exists an isomorphism
A: H — H and a Hilbert basis {¢, } such that

¢n = A¢n7 vn.

Proposition Let {¢,} be a Riesz basis of H. Then:

(a) There exist Cy,Cy > 0 such that

Cillul® <> [(u, a)* < Collul®,  Vue H.
n=1

(b) C(¢p, |n > 1) is dense in H.
(c) There exists another Riesz basis {n,} (conjugate Riesz basis) such that

<wma 77n> = Opm

Moreover, for all w € H,
=) () Y
n=1
Proof. Let v, = A¢,, with A isomorphism and ¢, Hilbert basis. Then

Z|u1/1n Z| “u, ¢n)|? = || A%ul?,  Yue H.

The first result holds then with C; = 1/||A7'|| and Cy = ||A||. The second one is
straightforward. The conjugate basis is defined by

M = (A_l)*¢n

and
u=AA'u=A <Z<A1u, m)%) = (u, (A7) ¢n) A,

which proves the results. 0]

Proposition K : H — H is compact if and only if there exist two Riesz bases {¢,} and

{tn} (of H and H respectively) and a sequence of positive non—increasing values o, — 0
such that

o0

K= Z 0n< ) ¢n>wn

n=1

Moreover, there exist ay, s > 0 such that

a0, < 0p(K) < agoy, V.

14



Proof. Equivalence of compactness and the series form above is straightforward. There
exist isomorphisms A : H — H and B : H — H such that A~ ¢, =: ¢,, and B4, =: ¢y,
are Hilbert bases. Then K = BKyA where

Zan ¢n wnm Un:Un(K0)7

and
(/A IB~ Do < 0n(AKoB) = 0n(K) < | Al | B]| o,

7.3 Singular values of bounded operators

K = Zo-n n n

be a compact operator (given by its SVD). Then

Proposition Let

onit(K) = |K = 1l Ko=) oy(-. )4
j=1

and

on1(K) < [[K =G
for all C, linear such that dim R(C,,) < n.

Proof. If dim R(C,,) < n, there exists 0 # ¢ € C(¢1, ..., Pnr1) such that C,¢ = 0. Then

n+1

1Ko — Cudll® = | K61° =) 0;1(0,65)° < o 0]

and therefore | K — Cy|| > 0p1. O

Definition. Let A be bounded. We define for all n > 0
oni1(A) :=inf{]|A — A, | | dim R(A,) < n}.
Notice that o1(A) = ||A|| and
0<o0,(4) <o,_1(A) <A, vn.
Moreover ¢, (A) — 0 if and only if A is compact. Otherwise
on(A) — 04 > 0.

Finally 0,(A) = 0,(A").

15



Proposition If A is an isomorphism, then

V[IATH < 0a(A) < [IA],  Vn.
Therefore, if A is an isometric isomorphism, then o,(A) =1 for all n.
Proof. If dimR(A,) < oo, we take

0#veR(AA), u=A1v
and notice that

HAu—AnuH2 = Hv—AnA_lsz
= vl + |44 0|2
> loll* = [[Aull® = @/ A7) lull®.

Therefore ||A — A, > 1/|]|[A7Y|| for all A,, with finite rank.

Proposition Let A and B be bounded operators. Then
on(AB) < [|Allon(B),  Vn.
Proof. If B,, has n—dimensional range, then
[A[[IB = Bul| 2 [[AB = ABy| = 0n11(AB)

and we can take the infimum in the left-hand side.

Proposition If A is invertible
(/1AI1F)on(A) < 0a(A7Y) < [[ATHP0u(4), V.
Proof. Let dimR(A,) <n. Then dimR(A™'A,A™!) <n and
Tup1 (A7) < IAT = AT A AT < AT A = Al A7)
and taking the infimum we obtain

On1 (A7) < AT o0 (A).

Remark. If K is compact
on(l + K) <14 0,(K).
Proof. Taking K,, (the n—th section of K) we prove that

(I +K) S [T+ K — K| S 1+ K = K, = 14 0,11 (K).

16



7.4 Finite rank operators and matrices

Situation. Consider two finite dimensional spaces Hy and H m and respective orthonor-
mal bases of them: {¢;} and {¢;}. Consider the matrix

A = (a;) = ((Ads, ;)

Proposition For alln
on(A) = 0,(A).

Proof. Consider the SVD of A = QXP*. It is simple to see that for all u € Hy
AU = Z(AU, Jj)igj
J
= Z(Agi, Jj)(% %)%
2%
= > ay{u, o)y
2%

— Z(u, Oi) Pk ki V)

ijik
= ) (u, dr)owy
k
where N B
Ve =Y Gl k=Y Pridi
j i
are orthonormal bases. The last expression is the SVD for the operator A. 0

Remark.. For every square matrix

[det A| = 01 (A)...on(A).
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