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Warning. These notes are under construction. (We apologize for any inconvenience!)
Check out my web site (you just need to google my name) for the latest version. I will
leave it in a prominent location for the time being.

These notes were first written written as support for a five hour lecture series Retarded
boundary integral equations and applications as part of the closure workshop of the special
semester on Theoretical and numerical aspects of inverse problems and scattering theory.
The workshop took place in La Coruña, Spain, on July 4-8, 2011. The organizers of the
event are warmly thanked for having thought of me for this occasion. The current version
(March 19, 2013) has been expanded using recent results on time domain analysis.

In this notes I am trying to show the way through the relatively difficult theory of
retarded layer potentials and integral operators for the acoustic wave equation in two and
three dimensions. I will also introduce Convolution Quadrature techniques for the time
discretization of potentials and integral equations and give a taste of their difficult but
exciting theory and their huge not entirely explored potentialities. In a final chapter I will
show some recent developments related to construction of integral absorbing boundary
conditions for wave propagation problems. Part of the aim of these notes has been to set
a clear path to learn the mathematical techniques for the use of time domain boundary
integral equations. This is part of a joint effort with Antonio Laliena (Universidad de
Zaragoza, Spain), the research group of Lehel Banjai at the Max-Planck-Institut in Leipzig
(Germany) and my own group at the University of Delaware. Since this is just a working
document, prepared for learning purposes, the tone will be somewhat colloquial. Apart
from some more narrative sections (those with less mathematical rigor), everything else
will be duly divided into paragraphs (plus propositions and their proofs) so that at each
moment we know where we are.

The contents so far

1. Informal presentation of the retarded layer potentials. Derivation of the corre-
sponding boundary integral calculus based on a few elements (the potentials and a
uniqueness theorem). Use of layer potentials for scattering problems. This chapter
is, again, informal.

2. Introduction of the basic tools for vector valued distributions and their Laplace
transforms. (Not all the proofs will be given here but all steps will be duly sketched.)
Distributional form of the problem of scattering by an obstacle. Laplace transform of
the single layer potential and operator. Bounds depending on the Laplace transform
parameter for all of them.

3. The formulas for (strong) inversion of the Laplace transform and the differentiation
theorem are used to delimit a precise class of symbols (Laplace transforms) and their

3



time domain distributional counterparts. Convolution operators with this class of
distributions is the setting for the remainder of the theory. We show how layer
potentials, boundary integral operators and their inverses (whenever they exist) are
in this class. A rigorous proof of Kirchhoff’s formula (the integral representation
theorem for causal acoustic waves) gives the necessary justification for the Calderón
type calculus we had introduced in the first chapter. We finally have a look at how
causality, finite speed of propagation and some kind of coercivity are hidden in the
Laplace transform of the potentials and operators.

4. Of the two classes of Convolution Quadrature methods, I present here the one that
is based on multistep methods. I present an almost finished portrait of the theory of
these methods applied to the class of convolution operators and equations that was
introduced in the previous chapter and detail the kind of results that are derived in
the case of scattering by a sound soft obstacle.

5. We go back to the Single Layer retarded potential and go as far as we can with the
Laplace domain techniques to prove estimates for the full discretization (Galerkin
in space, Convolution Quadrature in time) of the model equation that solves the
scattering problem by a sound-soft obstacle using an indirect formulation.

6. The following chapter is a simplified introduction to a class of abstract differential
equations of the second order in Hilbert spaces. The hypotheses are much reduced
with respect to what is common in the Hille-Yosida theory, but they will be those
that we will meet later on. All results will be proved using quite rudimentary
arguments of separation of variables space-time, related to the discrete spectrum of
a given unbounded operator.

7. The techniques of the previous chapter are then used to prove again all the es-
timates for the single layer retarded potential and operator (as well as general
Galerkin semidiscretization-in-space for the associated equation) using time domain
estimates. We will develop a streamlined way of proving the time domain results,
by working on a cut-off domain and identifying the resulting solution with the be-
ginning of the evolution of the potential solution.

8. The following chapter repeats all Laplace and time domain argument on the double
layer potential and its use for an indirect formulation of the scattering problem by
a sound-hard obstacle. As the reader will easily realize at this time, the arguments
end up being very similar in each particular situation and we will only have to take
care of whatever is different in each concrete problem.

Although the theory of time domain boundary integral equations is far from finished
(as its full potential in applications is only partially exploited), let me drop here some
names of some of the originators of the current excitement in the area. This is a highly
non-exhaustive list, so please, nobody take offence if their name does not appear here.
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• The theory of time domain boundary integral equations (at least, the theory that we
the numerical analysts use) stems from two papers by Alain Bamberger and Tuong
Ha-Duong [2, 3] in 1986. Many other papers were published and even more theses
were written (unfortunately much of this material was left unpublished and is now
very difficult to locate) in the buoyant French numerical analysis school. The names
of Jean-Claude Nédélec (at the Polytechnique) and Alain Bachelot (at the University
of Bordeaux) are attached to quite a lot of these doctoral dissertations. Touffic
Abboud and Isabelle Terrasse can be held responsible for the practical development
of these methods, evolving in their (to the best of my knowledge) only commercial
implementation. Interest in research aspects of this approach seems to be back:
Abboud, Terrasse together with Patrick Joly (INRIA Rocquencourt, France) and
Jerónimo Rodŕıguez (Santiago de Compostela, Spain) have recently developed one
of the few sets of integral transparent boundary conditions [1].

• Convolution Quadrature originated as a completely independent tool for approxi-
mation of convolutions. It came to age very much at the same time as time domain
integral equations, with two articles by Christian Lubich [14, 15] in 1988. This
technique was first devised for problems with parabolic structure (exemplified in
the operators having Laplace transforms defined on a sector instead of a half-plane).
A second family of convolution quadrature methods, based on Runge-Kutta meth-
ods, originated in the joint work of Lubich with Alexander Ostermann [17]. Almost
at the same time, Lubich applied his ideas to problems with hyperbolic structure,
including the single layer potential for the three dimensional equation [16]. This
was only natural, since CQ is based in Laplace transform methods and the theory
of Bamberger & Ha-Duong is based on exactly the same principle. The theory of
CQ based on RK schemes applied to hyperbolic problems was left unfinished and
was only recently completed by Lubich in collaboration with Lehel Banjai and Jens
Markus Melenk [4, 5].

• Not being as popular as their frequency domain cousins, time domain boundary
integral equations have known a rich development in the engineering community.
Methods based on Galerkin time domain discretization (which is the original point of
view of the French school), applied to a vaste array of problems in electromagnetism,
have been developed by the group of Eric Michielssen at the University of Michigan.

• The convolution quadrature point of view was initially not very well tended by the
mathematical boundary integral community, but there was a strong development in
the field of applications to elastodynamics, much of it led by the group of Martin
Schanz at the Graz University of Technology (Austria). An early account of this
development can be found in the monograph [21]. A more recent survey can be
found in [6]. Applications to electromagnetism have been developed by the group
of Daniel Weile and Peter Monk at the University of Delaware.

• Some papers by Stefan Suater (University of Zurich) with different collaborators,
re-sparked the interest of numerical analysts in time domain integral equations,
specially with a focus on convolution quadrature techniques. Lehel Banjai and his
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group are making rapid progress in this direction. Myself, working with my then
graduate student Antonio Laliena, proved that the Laplace domain contained much
more information than we had expected and that convolution quadrature tech-
niques combined perfectly with space Galerkin discretization in many non-trivial
situations of scattering of acoustic and elastic waves with penetrable obstacles, in-
cluding non-homogeneous obstacles where numerical modeling is carried out with
the finite element method [13]. We were happy to find a quite general (and I want to
say innovative) approach that has since been applied to electromagnetism or more
complicated elastodynamic problems.

• The full Galerkin approach is also being jointly developed by the groups of Ernst
Stephan at the University of Hanover (Germany) and Matthias Maischak at Brunel
University (England) with a current focus on acoustics. Several researchers in Italy
(among them, Alessandra Aimi and Mauro Diligenti at Parma) are also readdressing
the full Galerkin method for the acoustic equations.

Acknowledgements. As already mentioned, a great deal of what appears in this doc-
ument is the result of continuous collaboration with Antonio Laliena, Vı́ctor Domı́nguez,
and Lehel Banjai. Some of my current students (Tonatiuh Sánchez-Vizuet and Tianyu
Qiu) have had a careful look at several chapters of these notes, working out all the exercises
and checking proofs. My current research is partially supported by the NSF (DMS ....).
Three different meetings at the Oberwolfach Mathematical Institute, and in particular the
talks I gave there, helped me in the search of a systematic approach to the development
of this theory. I am deeply grateful to the organizers of those workshops (Martin Costa-
bel and Ernst Stephan in the first one; Ralf Hiptmair, Roland Hoppe, Patrick Joly, and
Ulrich Langer for the last two) for giving me the chance to enjoy the wonders of working,
thinking and discussing in the middle of the Black Forest. Once again, these notes were
triggered by an invitation to teach a summer course in Spain in 2011, and the organizers
of that meeting can be blamed for starting these notes.
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Chapter 1

The retarded layer potentials

In this chapter we are going to introduce the basic concepts of time domain acoustic layer
potentials and how they can be used to represent the solutions of scattering problems.
All notions introduced in this chapter will be given at an intuitive level and with basically
no formalization. The reader will have to wait for the next chapters to receive a precise
sketch of the theory.

1.1 Acoustic sources and dipoles

Let start this chapter by having a look at a spherical wave. We consider a function (a
signal) λ : R → R such that λ(t) = 0 for all t < 0. A function of the time variable
that vanishes for t < 0 will be always referred to as a causal function. We now choose
x0 ∈ R3 and consider the function

u(x, t) :=
λ(t− c−1|x− x0|)

4π|x− x0|
. (1.1)

A more or less boring computation shows that

c−2∂
2u

∂t2
= ∆u ∀x 6= x0 ∀t > 0,

as long as λ ∈ C2(R), where the Laplace operator ∆ is taken in the space variables. (The
result is actually true for less smooth λ, but we are not going to worry about regularity
at this point.) It is interesting to notice the following facts.

• The function u moves on spherical surfaces. Actually,

u(x, t) =
λ(t− c−1r)

4πr
|x− x0| = r. (1.2)

This shows that points on a sphere centered at x0 perceive the same solution at the
same time.

• The previous formula shows also that for a point at distance r of the point source,
we need to wait c−1r time units to start perceiving any signal. Apart from this
delay, the entire signal is received at speed c (and with a damping factor 4πr). The
signal goes through, exactly as emitted.
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There are other kind of solutions of the wave equation that can be understood as traveling
on spherical surfaces. If u is a sufficiently smooth solution of the wave equation, so are the
three components of ∇u and therefore, so is ∇u · d, where d is a fixed vector. With this
idea, and starting in (1.1), we can create a new family of solutions to the wave equation:

u(x, t) := ∇x0

(
ϕ(t− c−1|x− x0|)

4π|x− x0|

)
· n0 (1.3)

= −∇x

(
ϕ(t− c−1|x− x0|)

4π|x− x0|

)
· n0

= ϕ(t− c−1|x− x0|)
(x− x0) · n0

4π|x− x0|3
+ c−1ϕ̇(t− c−1|x− x0|)

(x− x0) · n0

4π|x− x0|2

We will assume that n0 is a unit vector. This formula bears some similitude with (1.1).
For instance, at time t, all points on the surface |x − x0| = r receive information from
the signal ϕ(t) proceeding from the same time (t − c−1r), although, the points do not
only get the value of the signal ϕ(t − c−1r), but also its trend ϕ̇(t − c−1r). The main
difference between the wave (1.3) and the spherical wave (1.1) is directionality. While
points seeing the source in the direction n0 get to perceive the signal, all points such that
(x − x0) · n0 = 0 are in a deaf spot and miss the entire signal. Actually, if the angle
between x− x0 and n0 is θ, then

u(x, t) =
1

4πr

(ϕ(t− c−1r)

r
+
ϕ̇(t− c−1r)

c

)
cos θ (1.4)

The points x0 ± rn0 (respective North and South pole of the sphere with axis n0, get
the signal with the same amount of attenuation, but mirrored. The reader is encouraged
to check the dimensions of all the elements in formulas (1.2) and (1.4) to recognize that
the respective transmitted signals (λ and ϕ) have different dimensions. (One way to
understand why is that there is differentiation in space in (1.3)-(1.4) which needs some
kind of compensation.)

Another way of motivating the directional spherical wave (1.3) uses the physical idea
of dipole. Take two source points

x0 ± h
2
n0,

separated a distance h in the direction n0. The upper point x0 + h
2
n0 emits a signal h−1ϕ

and simultaneously the point x0− h
2
n0 emits the signal −h−1ϕ. The receiver gets to listen

the signal
1

h

(ϕ(t− c−1|x− x0 − h
2
n0|)

4π|x− x0 − h
2
n0|

−
ϕ(t− c−1|x− x0 + h

2
n0|)

4π|x− x0 + h
2
n0|

)
which in the limit h→ 0 turns into (1.3).

1.2 Acoustic layer potentials

The single layer potential can be understood as the (continuous) superposition of spherical
waves (1.1) being emitted from points on a surface Γ:

(S ∗ λ)(x, t) :=

∫
Γ

λ(y, t− c−1|x− y|)
4π|x− y|

dΓ(y). (1.5)
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The causal signal λ(t) has been substituted by a density distribution of causal signals
λ(y, t), i.e., λ : Γ × R → R such that λ( · , t) ≡ 0 for t < 0. The convolution sign in the
notation of this and the double layer potential is purely formal for the time being.

The reader who meets this kind of potential expression for the first time is encouraged
to have a close look at the relatively bad aspect that it has: there is integration in the
space variable y that somehow got its way into the time variable (through the delay). A
particular set of densities is the addition of tensor products of functions of space and time

λ(y, t) =
N∑
j=1

Φj(y)λj(t),

producing simpler propagated signals

N∑
j=1

∫
Γ

Φj(y)λj(t− c−1|x− y|)
4π|x− y|

dΓ(y).

Simplifying even more, we can assume that the surface Γ has been subdivided into N
panels {Γ1, . . . ,ΓN} and Φj is just the characteristic function of the panel Γj. This is how
the potential looks like now:

N∑
j=1

∫
Γj

λj(t− c−1|x− y|)
4π|x− y|

dΓ(y).

In any of the above expressions, it is easy to check that if a point is at a distance r of
Γ, it will take T = c−1r time units for the signal to reach the point. Apart from very
simple configurations, different points x will perceive different outputs, since the balance
of distances |x−y| with the spacial distribution of the density is going to differ depending
on the point of view.

Another class of signals we can plug into the potential expression are time-harmonic
signals. A non-causal time harmonic signal emitted from Γ would be

Re (λ(y)e−ıωt) λ : Γ→ C,

which is heard as a time harmonic signal

Re
(
e−ıωt

∫
Γ

eıωc
−1|x−y|

4π|x− y|
λ(y)dΓ(y)︸ ︷︷ ︸

)
.

The underbraced expression can be recognized as a single layer potential associated to the
Helmholtz equation ∆ + k2, (k = ω/c is the wave number) which is the equation satisfied
by the spacial part of a time harmonic solution to the wave equation.

A double layer potential can be defined with the same idea of superposition. The
directionality at the point y ∈ Γ its given by the unit normal vector ν(y):

(D ∗ ϕ)(x, t) :=

∫
Γ

∇y

(
ϕ(z, t− c−1|x− y|)

4π|x− y|

) ∣∣∣
z=y
· ν(y)dΓ(y)

=

∫
Γ

(x− y) · ν(y)

4π|x− y|3
(
ϕ(y, t− c−1|x− y|) + c−1|x− y|ϕ̇(y, t− c−1|x− y|)

)
dΓ(y).
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Obviously, for this expression to make sense we need an orientable surface with a well
defined normal vector field (almost everywhere, so polyhedra are not a problem).

1.3 Jump relations

Let us try to see some properties of the possible limits of the layer potentials when we
get close to the surface.

Continuity of the single layer potentials. A possible way to study the single layer
potential is by studying functions of the form

w(x, x̂, t) :=

∫
Γ

λ(y, t− c−1|x̂− y|)
4π|x− y|

dΓ(y), (1.6)

since (S ∗ λ)(x, t) = w(x,x, t). Let z ∈ Γ. We first take the limit x̂ → z in (1.6) and we
obtain (formally at least) ∫

Γ

λ(y, t− c−1|z− y|)
4π|x− y|

dΓ(y). (1.7)

In a second step, we recognize in (1.7) the form of a Coulomb potential (the single layer
potential for the Laplacian), which is continuous across Γ. This means that

lim
x→z∈Γ

(S ∗ λ)(x, t) =

∫
Γ

λ(y, t− c−1|z− y|)
4π|z− y|

dΓ(y) =: (V ∗ λ)(z, t).

Discontinuity of the normal derivative of the single layer potential. We next
look at directional derivatives of S ∗ λ. Let ν = ν(z) with z ∈ Γ. Then:

(
∇x(S ∗ λ) · ν

)
(x, t) = −c−1

∫
Γ

λ̇(y, t− c−1|x− y|)
4π|x− y|

(x− y) · ν
|x− y|

dΓ(y)

−
∫

Γ

λ(y, t− c−1|x− y|)
4π|x− y|

(x− y) · ν
|x− y|2

dΓ(y)

=: a(x, t) + b(x, t)

With arguments similar to those we used in the continuity analysis of S ∗ λ, we can
prove that a is continuous across Γ. We are now going to give a simplified argument
demonstrating that

b(z− εν(z), t)− b(z + εν(z), t)
ε→0−→ λ(z, t),

which is equivalent to showing that the jump of the normal derivative of S ∗ λ across Γ is
λ. Note that when x → z ∈ Γ, only a neighborhood of z in Γ is relevant from the point
of view of creating a discontinuity in the integral:

b(x, t) = −
∫

Γ

λ(y, t− c−1|x− y|)
4π|x− y|

(x− y) · ν(y)

|x− y|2
dΓ(y).
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To further simplify the exposition, let us assume that Γ is a flat surface around z. After
translation, rotation and localization, we can assume that

z = 0 ν = (0, 0, 1) Γ = {(y, 0) : y ∈ R2 |y| < R} = B(0, R)× {0}.

If x = z± εν(z) = ±ε(0, 0, 1), then

b(0− εν, t)− b(0 + εν, t) = ε

∫
B(0,R))

λ(y, t− c−1|(y, ε)|)
2π|(y, ε)|3

dy

= λ(0, t)

∫
B(0,R)

ε

2π|(y, ε)|3
dy

+ε

∫
B(0,R)

λ(y, t− c−1|(y, ε)|)− λ(0, t)

4π|(y, ε)|3
dy. (1.8)

Note that ∫
B(0,R)

ε

2π|(y, ε)|3
dy =

∫ R

0

ε r√
(r2 + ε2)3

dr = 1− ε√
R2 + ε2

ε→0−→ 1. (1.9)

On the other hand, for smooth λ

|λ(y, t− c−1|(y, ε)|)− λ(0, t)| ≤ C1|y|+ C2ε, (1.10)∫
B(0,R)

ε2

2π|(y, ε)|3
dy

ε→0−→ 0, (1.11)

and ∫
B(0,R)

ε|y|
2π|(y, ε)|3

dy =

∫ R

0

εr2√
(r2 + ε2)3

dr

= ε log(
√
R2 + ε2 +R)− εR√

R2 + ε2
− ε log ε

ε→0−→ 0. (1.12)

Using (1.9), (1.10), (1.11) and (1.12) in (1.8), the result follows. The case of curved
boundaries is very similar.

Discontinuity of the double layer potential. The expression for the double layer
potential

(D ∗ ϕ)(x, t) = c−1

∫
Γ

ϕ̇(y, t− c−1|x− y|)
4π|x− y|

(x− y) · ν(y)

|x− y|
dΓ(y)

+

∫
Γ

ϕ(y, t− c−1|x− y|)
4π|x− y|

(x− y) · ν(y)

|x− y|2
dΓ(y)

definitely resembles that of the directional derivative of the single layer potential. We can
recognize two terms: the first one is continuous and in the second one, we can use the
same argument (as in exactly the same argument) to prove that for every z ∈ Γ such that
Γ is flat around z

(D ∗ ϕ)(z + hν(z), t)− (D ∗ ϕ)(z− hν(z), t)
ε→0−→ ϕ(z, t).

Note that the sign of the jump is the opposite to the one of the normal derivative of S ∗λ.
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Continuity of the normal derivative of the double layer potential. Assuming
more regularity for the density ϕ, it is possible to show that the normal derivative of
D ∗ ϕ is continuous across smooth points of Γ. The proof is more involved (tangential
integration by parts is involved and finite part integrals make their appearance) and
requires a certain amount of patience. Because we will take a different point of view,
using Laplace transform techniques and basing our results on well established properties
of layer potentials for elliptic problems, we will just accept this result for the moment
being.

1.4 A Calderón type calculus

The structure of the boundary integral calculus for the wave equation is very similar to
that of elliptic operators, so those accustomed to the many formulas (Green representation
theorem, boundary integral identities, Calderón projector, etc) of the boundary integral
calculus will recognize here exactly the same basic structure. The main difference is at
the analytic level: spaces are much less clear and the theory requires quite some effort to
be developed. The boundary integral calculus can be derived in several ways. My favorite
is the following. It develops from three concepts:

• a uniqueness theorem for transmission problems,

• a concept of single layer operator,

• a concept of double layer operator.

(The three concepts can be grouped in one: an existence and uniqueness theorem for
transmission problems.) Once these elements have been established, the representation
theorem (Green’s Theorem for steady state problems, Kirchhoff’s formula for waves) is a
direct consequence of these elements. The boundary integral operators are the averages
of the Cauchy data of layer operators and they yield a collection of integral identities
satisfied by interior and exterior solutions.

We are going to informally expose this theory. We will need Chapters 2 and 3 to
develop a rigorous theory for the main building blocks. The geometric layout is composed
of a bounded domain Ω−, with Lipschizt boundary Γ and exterior Ω+ := Rd \ Γ (that
is supposed to be connected). The restriction (trace) of a function u to the boundary Γ
from the interior and exterior of Γ will be denoted γ−u and γ+u respectively. The normal
derivative (with the normal vector pointing outwards) from inside and outside are ∂−ν u
and ∂+

ν u. Jumps of these two quantities across the interface Γ are denoted

[[γu]] := γ−u− γ+u, [[∂νu]] := ∂−ν u− ∂+
ν u.

Averages are denoted with double curly brackets

{{γu}} := 1
2
(γ−u+ γ+u), {{∂νu}} := 1

2
(∂−ν u+ ∂+

ν u).

In the background of this theory there is a class of functions u(x, t) for which we can
take second time derivatives, spacial Laplacian, traces and normal derivatives on the
boundary and initial values at t = 0. For the moment being let us refer to these functions
as admissible functions.
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The uniqueness result. The first key result is uniqueness result for a kind of transmis-
sion problem of the wave equation. It can be informally stated as follows: if an admissible
function u satisfies

c−2utt = ∆u in Rd \ Γ× (0,∞),

[[γu]] = 0 on Γ× (0,∞),

[[∂νu]] = 0 on Γ× (0,∞),

u( · , 0) = 0 in Rd \ Γ,

ut( · , 0) = 0 in Rd \ Γ,

then u is necessarily zero.
Those used to frequency domain problems will be wondering where the radiation

condition is. This can be dealt with in several ways, demanding finite energy for each
time, asking for bounded spacial support for each time, etc. At this level, we assume
that this is part of the class of functions where we express uniqueness. When we develop
the correct theoretical frame, radiation will be part of causality and will not have to be
expressed as a separate condition.

A single layer potential. For a function λ : Γ × (0,∞) → R in a certain class of
functions, there exists and admissible function u := S ∗ λ such that

c−2utt = ∆u in Rd \ Γ× (0,∞),

[[γu]] = 0 on Γ× (0,∞),

[[∂νu]] = λ on Γ× (0,∞),

u( · , 0) = 0 in Rd \ Γ,

ut( · , 0) = 0 in Rd \ Γ.

This is, obviously, the unique solution of this problem.

A double layer potential. For a function ϕ : Γ × (0,∞) → R in certain class, there
exists and admissible function u := D ∗ ϕ such that

c−2utt = ∆u in Rd \ Γ× (0,∞),

[[γu]] = −ϕ on Γ× (0,∞),

[[∂νu]] = 0 on Γ× (0,∞),

u( · , 0) = 0 in Rd \ Γ,

ut( · , 0) = 0 in Rd \ Γ.

There is an inherent compatibility condition between the three classes of functions. It
can be expressed as follows: given u in the class of pressure (wave) fields, the quantities
λ := [[∂νu]] and ϕ := [[γu]] can be used as respective inputs of the single and double layer
potentials.
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First consequence: Kirchhoff’s formula. If u is a solution of the wave equation
around Γ

c−2utt = ∆u in Rd \ Γ× (0,∞),

u( · , 0) = 0 in Rd \ Γ,

ut( · , 0) = 0 in Rd \ Γ,

then
u = S ∗ [[∂νu]]−D ∗ [[γu]]. (1.13)

This is a direct consequence of the definitions of layer potentials and the uniqueness
theorem for transmission problems.

New definitions: boundary integral operators. The properties of potentials

[[γ(S ∗ λ)]] = 0 [[∂ν(D ∗ ϕ)]] = 0 (1.14)

allow us to define the following four operators:

V ∗ λ := {{γ(S ∗ λ)}} = γ−(S ∗ λ) = γ+(S ∗ λ),

Kt ∗ λ := {{∂ν(S ∗ λ)}},
K ∗ ϕ := {{γ(D ∗ ϕ)}},
W ∗ ϕ := −{{∂ν(D ∗ ϕ)}} = −∂−ν (D ∗ ϕ) = −∂+

ν (D ∗ ϕ).

Since
[[∂ν(S ∗ λ)]] = λ [[γ(D ∗ ϕ)]] = 0,

the definitions imply that

∂±ν (S ∗ λ) = ∓1
2
λ+Kt ∗ λ γ±(D ∗ ϕ) = ±1

2
ϕ+K ∗ ϕ. (1.15)

The collection of all these formulas is often referred to as the jump relations of poten-
tials.

Boundary integral identities. Starting at the representation theorem (Kirchhoff’s
formula)

u = S ∗ [[∂νu]]−D ∗ [[γu]]

and using the jump relations, we can write, for instance,[
{{γu}}
{{∂νu}}

]
=

[
−K V
W Kt

]
∗
[

[[γu]]
[[∂νu]]

]
. (1.16)
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Exterior solutions: direct method. The previous presentation was carried out for
solutions of transmission problems. The reader might wonder, what to do when we only
have an exterior solution at our disposal, i.e., a solution of

c−2utt = ∆u in Ω+ × (0,∞),

u( · , 0) = 0 in Rd \ Γ,

ut( · , 0) = 0 in Rd \ Γ.

The simplest thing to do is to consider that u ≡ 0 in Ω−× (0,∞) naturally completes the
exterior solution. Then

[[γu]] = −γ+u, {{γu}} = 1
2
γ+u, [[∂νu]] = −∂+

ν u, {{∂νu}} = 1
2
∂+
ν u.

Therefore, Kirchhoff’s formula (1.13) for this u is reexpressed as

u = D ∗ γ+u− S ∗ ∂+
ν u, (1.17)

while the integral identities (1.16) become

1

2

[
γ+u
∂+
ν u

]
=

[
K −V
−W −Kt

]
∗
[
γ+u
∂+
ν u

]
(1.18)

or equivalently [
δ0
2
−K V
W δ0

2
+Kt

]
∗
[
γ+u
∂+
ν u

]
=

[
0
0

]
. (1.19)

In this last expression we have used the formal notation δ0 ∗ ξ = ξ (convolution with the
Dirac delta is the identity) in order to keep convolutional notation for the entire matrix
of operators. Some people prefer reordering the columns in the above expression to get[

V δ0
2
−K

δ0
2

+Kt W

]
∗
[
∂+
ν u
γ+u

]
=

[
0
0

]
,

emphasizing some kind of symmetry of the system that is not clear at the present moment.
It is interesting to remark that Kirchhoff’s formula for the exterior solution is also

representing the zero solution inside (that is how we got to it) and therefore

D ∗ γ+u− S ∗ ∂+
ν u ≡ 0 in Ω−.

1.5 Scattering problems

The geometric layout of this section will be exactly the same as the one of the previous
section: a bounded domain Ω− with Lipschitz boundary Γ (this is the scatterer) and
connected exterior Ω+.
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Incident waves. In a scattering problem there is something called an incident wave
that is supposed to be known. Possible incident waves are spherical waves

uinc(x, t) =
λ(t− c−1|x− x0|)

4π|x− x0|
,

emitted from a point source x0 6∈ Ω− and with causal signal λ. Their directional counter-
parts

uinc = ∇x0

(
ϕ(t− c−1|x− x0|)

4π|x− x0|

)
· n0

are also valid incident waves. Superposition of several of the above are also acceptable
incident waves. These waves are compactly supported at all times. Plane waves make for
good non-compactly supported incident waves

uinc(x, t) = λ(c−1x · d− t) |d| = 1.

For the placement of the obstacle to be feasible we need that at time zero the support of
uinc( · , 0) and uinc

t ( · , 0) does not intersect Ω−. Apart from compactness of their support,
the nature of spherical and plane waves is very different, since, when seen in free space Rd,
the first ones are solutions of a non-homogeneous wave equation (there is a singular source
placed at x0) but have vanishing initial condition, while plane waves are unforced solutions
of the wave equation corresponding to a particular set of non-compactly supported initial
conditions.

In all cases, it is customary to consider that an incident wave is a solution of a wave
propagation problem in free space:

c−2uinc
tt = ∆uinc + f in Rd × (0,∞),

uinc( · , 0) = u0 in Rd,

uinc
t ( · , 0) = v0 in Rd.

Physical placement of the obstacle at time t = 0 requires that the support of u0 and v0

does not intersect Ω−. Source terms at any given time f( · , t), should be set apart from
the scatterer as well.

Scattering by obstacles. The influence of the simplest scatterers on the wave field is
modeled by a boundary condition. For instance, a sound-soft obstacle induces a Dirichlet
boundary condition:

c−2utot
tt = ∆utot + f in Ω+ × (0,∞),

γutot = 0 on Γ× (0,∞),

utot( · , 0) = u0 in Ω+,

utot
t ( · , 0) = u̇0 in Ω+.

The source term and initial conditions are the same as for the incident wave. A sound-hard
obstacle is modeled with a Neumann boundary condition instead

∂νu
tot = 0 on Γ× (0,∞).
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Simple absorbing boundary conditions are modeled with the dynamic boundary conditions

∂νu
tot − αc−1γut = 0 on Γ× (0,∞),

where α : Γ→ [0,∞) plays the role of a surface impedance function.

The scattered wave. For practical (computational) purposes, the decomposition

utot = uinc + uscat

is often used. Note that this is a non-physical decomposition. The scattered wave field
is just the difference between what is happening (utot) and what would happen if the
obstacle were not present (uinc). While the scattered wave will respect some basic causality
principles and will travel at the correct speed, it will do so without noticing the obstacle,
because it has to compensate for the fact that the incident wave does not perceive the
obstacle while, obviously, the total field does. Our future unknown will be the scattered
wave field u := uscat = utot−uinc that satisfies a homogeneous equation, with homogeneous
initial conditions but non-vanishing boundary conditions:

c−2utt = ∆u in Ω+ × (0,∞),

BC(u) = −BC(uinc) on Γ× (0,∞),

u( · , 0) = 0 in Ω+,

ut( · , 0) = 0 in Ω+.

Other possible scattering problems include penetrable scatterers with different material
properties. Combined methods, using integral equations for the exterior scattered field
and volume formulations for the interior of the scatterer are available. Mathematically
speaking, they do not differ in essence to the kind of problems we meet when building
transparent boundary conditions for wave propagation problems (Chapter 5).

1.6 Integral formulations in scattering

Consider again the problem of scattering by a sound-soft obstacle:

c−2utt = ∆u in Ω+ × (0,∞),

γu = g on Γ× (0,∞),

u( · , 0) = 0 in Ω+,

ut( · , 0) = 0 in Ω+.

The incident wave is only perceived as a boundary condition

g := −γuinc : Γ× (0,∞)→ R.
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Indirect formulation. Since single-layer potentials are solutions of the wave equation
with homogeneous initial conditions, we are allowed to propose

u := S ∗ λ (1.20)

as a possible solution of the scattering problem, for a causal density to be determined.
Recalling that we have denoted V ∗ λ := γ(S ∗ λ), it follows that in order for u = S ∗ λ to
be a solution, we need

V ∗ λ = g. (1.21)

In due time, we will see that (1.21) is a uniquely solvable equation. With it we will
determine the density λ and the representation formula (1.20) will deliver the solution to
the scattering problem. Because single-layer potentials are continuous across the interface
Γ, we are naturally attaching a continuous extension of the solution to the interior of the
scatterer, so with (1.20)-(1.21) we are actually solving

c−2utt = ∆u in Rd \ Γ× (0,∞),

γ±u = g on Γ× (0,∞),

u( · , 0) = 0 in Rd \ Γ,

ut( · , 0) = 0 in Rd \ Γ.

These are two separate wave equations (one in Ω+ and another one in Ω−), that have no
connection apart from sharing the same boundary condition (this is not a transmission
problem). When g = −γuinc it follows that the interior solution is just −uinc.

Direct formulation. Another approach consists of taking Kirchhoff’s formula as the
integral representation formula. Therefore, we have (recall (1.17))

u = D ∗ γ+u− S ∗ ∂+
ν u.

Setting λ := ∂+
ν u to be our boundary unknown and substituting the boundary condition,

it follows that
u = D ∗ g − S ∗ λ. (1.22)

The first of the integral identities (1.18) or (1.19)

V ∗ λ = −1
2
g +K ∗ g (1.23)

can be used as an integral equation in order to try to find λ and obtain the scattered wave-
field with it. While the pair of integral equation and integral representation for the indirect
formulation (1.20)-(1.21) is definitely simpler, the pair (1.22)-(1.23) has the advantage of
computing a physical quantity on the boundary. The practical choice in frequency domain
problems is almost invariably for the direct method, but there is much more to it (for
complicated reasons we will not deal with) in the time domain. There is also the question
of whether we should strive for formulations where the boundary unknown appears under
the action of an operator of the second kind (identity plus integral operator). I will not
deal with this question either, since the choices in the time domain are still quite open.
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1.7 Galerkin semidiscretization

We are going to do some work on the equation

V ∗ λ = g (1.24)

that appeared in Section 1.6. In strong integral form, this is∫
Γ

λ(y, t− c−1|x− y|)
4π|x− y|

dΓ(y) = g(x, t) x ∈ Γ t > 0. (1.25)

The unknown is a causal function λ : Γ× R → R. For (semi)discretization let us choose
a finite dimensional space Xh ⊂ L∞(Γ) with basis {Φ1, . . . ,ΦN} and let us look for

λh :=
N∑
j=1

λj(t)Φj(x), (1.26)

where the unknowns are N causal functions λj : R→ R of the time variable. Because we
are drastically reducing the set of possible densities we cannot expect that the integral
equation (1.24) stands any chance of having a solution of the form (1.26). Instead, we
will look for some averages (moments) of left and right hand side to coincide, namely,∫

Γ

Φi(x)
(
V ∗ λh)(x, t)dΓ(x) =

∫
Γ

Φi(x) g(x, t)dΓ(x) i = 1, . . . , N, t > 0.

This is equivalent to the following system

N∑
j=1

∫
Γ

∫
Γ

Φi(x)Φj(y)

4π|x− y|
λj(t− c−1|x− y|) dΓ(x)dΓ(y) =

∫
Γ

Φi(x) g(x, t)dΓ(x) (1.27)

i = 1, . . . , N, t > 0.

This is a system of delay equations with delays integrated over distances between points.
In Chapter 4 we will see that this system can be considered as a system of convolution
equations that can be discretized with the convolution quadrature method.

A second option consists of using a time-Galerkin discretization of the system above.
This is equivalent to decomposing each λj as a linear combination of functions and testing
the equations above in the following way: we multiply them by the derivative (!!)
of the shape functions and possibly some fixed time-dependent weight, and we then
integrate in the time variable.The inherent coercivity principle is explained in Section
3.7. To explain this more clearly, let us assume that we have a time-grid with constant
time-step

0 = t0 < t1 < t2 < . . . < tn < . . . tn = κn,

and that we use piecewise constant functions in time. This corresponds to choosing the
basis of characteristic functions

χ(tn−1,tn)(t) n ≥ 1.
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The fully discrete unknown has now the form

N∑
j=1

∞∑
m=1

λmj χ(tm−1,tm)(t)Φj(x), λmj ∈ R.

Each of the equations (1.27) is multiplied by χ̇(tn−1,tn) and integrated from 0 to ∞. Since
χ̇(tn−1,tn) = −δtn + δtn−1 , this is equivalent to setting up a system

N∑
j=1

n∑
m=1

λmj (−An−mij + An−1−m
ij ) = −gni + gn−1

i (1.28)

with

An−mij =

∫
Γ

∫
Γ

Φi(x)Φj(y)

4π|x− y|
χ(tm−1,tm)(tn − c−1|x− y|)dΓ(x)dΓ(y)

=

∫
Γ

∫
Γ

Φi(x)Φj(y)

4π|x− y|
χ(tn−tm,tn−tm−1)(c

−1|x− y|)dΓ(x)dΓ(y)

=

∫
Γ

∫
Γ

Φi(x)Φj(y)

4π|x− y|
χ(tn−m,tn−m+1)(c

−1|x− y|)dΓ(x)dΓ(y)

=

∫ ∫
Γn−mc

Φi(x)Φj(y)

4π|x− y|
dΓ(x)dΓ(y),

where
Γ`c := {(x,y) ∈ Γ× Γ : ct` ≤ |x− y| ≤ c t`+1}, ` ≥ 0,

and

gni =

∫
Γ

Φi(x)g(x, tn)dΓ(x)

The system (1.28) has a block triangular structure with some Toeplitz character to it.
(This character, as well as the convolutional structure in discrete time is heavily dependent
on us having chosen a constant time-step.) We can start by solving for n = 1

N∑
j=1

A0
ijλ

1
j = g1

i i = 1, . . . , N.

Next we solve for n = 2

N∑
j=1

A0
ijλ

2
j +

N∑
j=1

(A1
ij − A0

ij)λ
1
j = g2

i − g1
i ,

for n = 3,
N∑
j=1

A0
ijλ

3
j +

N∑
j=1

(A1
ij − A0

ij)λ
2
j +

N∑
j=1

(A2
ij − A1

ij)λ
0
j = g3

i − g2
i ,

and so on. Each time-step requires the solution of a linear system with the same matrix.
(If piecewise polynomial discontinuous functions are used for space discretization, the
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matrix A0 is actually very sparse.) The sets Γ` are empty for large enough ` (depending
on the size of Γ, the speed of waves c and the time step κ) and therefore the system (1.28)
has a finite tail.

The main difficulty of this full Galerkin approach is related to the precise computation
of the matrices An. Thinking of a piecewise constant approximation in the space variable,
we need to compute integrals∫ ∫

Γ`i,j

1

|x− y|
dΓ(x)dΓ(y) Γ`i,j := {(x,y) : x ∈ Γi, y ∈ Γj, ct` ≤ |x− y| ≤ ct`+1},

where a weakly singular integrand is integrated on domains with quite exotic shape. This
is not easily done and it has been frequently reported that the method is extremely
sensitive to small errors (and mistakes) in computation of these integrals.

1.8 Two dimensional waves

Single layer potential. The layer potentials in two dimensional are considerably more
complicated. The single layer potential admits the expression:

(S ∗ λ)(x, t) :=
1

2π

∫
Γ

∫ t−c−1|x−y|

0

λ(y, τ)√
(t− τ)2 − c−2|x− y|2

dΓ(y) dτ

=

∫
Γ

∫ t

0

G2(t− τ, |x− y|)λ(y, τ) dΓ(y)dτ

where

G2(t, r) :=
H(t− c−1r)

2π
√
t2 − c−2r2

and H is the Heaviside function. Unlike in the three dimensional case, there is a space-
and-time integral in the definition, since the two dimensional wave kernel is a function.
Compare this with the three dimensional kernel, that can be formally expressed as

G3(t, r) :=
δ(t− c−1r)

4πr
.

The Dirac delta distribution creates the pure delay (no integration over the past) of this
kernel.

Why? There is a simple argument that shows how the two dimensional potential comes
up. Assume that the causal signal λ(t) is simultaneously emitted by all points in the z
axis. A point (x, y, 0) ≡ (r cos θ, r sin θ, 0) then receives the signal∫ ∞

−∞

λ(t− c−1
√
r2 + z2)

4π
√
r2 + z2

dz = 2

∫ ∞
0

λ(t− c−1
√
r2 + z2)

4π
√
r2 + z2

dz.

The change of variables (changing the third dimension z to a fictitious time τ)

(0,∞) 3 z ←→ τ = t− c−1
√
r2 + z2 ∈ (−∞, t− c−1r),
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dz√
z2 + r2

=
dτ

zc−1
=

dτ√
(t− τ)2 − c−2r2

transforms the last integral to∫ t−c−1r

−∞

λ(τ)

2π
√

(t− τ)2 − c−2r2
dτ =

∫ t−c−1r

0

λ(τ)

2π
√

(t− τ)2 − c−2r2
dτ,

that is, to the cylindrical (two-dimensional circular) wave from which the layer potential
is constructed.

The double layer potential. If we formally take the gradient of G2

∇G2(t, r) =
c−1

2π

δ(t− c−1r)√
t2 − c−2r2

(−∇r)− c−2

2π

H(t− c−1r)

(t2 − c−2r2)3/2
(−1

2
∇r2)

we reach an expression for the double layer potential in two dimensions:

(D ∗ ϕ)(x, t) :=
c−1

2π

∫
Γ

ϕ(u, t− c−1|x− y|)
|x− y|

(x− y) · ν(y)√
(t− τ)2 − c−2|x− y|2

dΓ(y)

−c
−2

2π

∫
Γ

∫ t−c−1|x−y|

0

ϕ(y, τ)

(t− τ)2 − c−2|x− y|2
(x− y) · ν(y)√

(t− τ)2 − c−2|x− y|2
dΓ(y)dτ

=

∫
Γ

∫ t

0

∂ν(y)G2(t− τ, |x− y|)ϕ(y, τ)dΓ(y)dτ.

This one has a circular wave front with no memory plus another one that integrates over
the past. Again, it is illustrative to compare with the three dimensional case:

∇G3(t, r) = c−1 δ
′(t− c−1r)

4πr
(−∇r) +

δ(t− c−1r)

4πr2
(−∇r).
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Chapter 2

From time domain to Laplace
domain

A possible theoretical frame for the time domain layer potentials for the wave equation is
that of vector valued distributions. From this moment on, instead of thinking of functions
of the space and time variables u(x, t) we will think of functions of the time variable with
values on a space of functions of the space variables, which amounts to consider the
functions u(t) = u( · , t) (we will not change the name). In principle, our distributions
will be only allowed to take real values, but the test functions (and the Laplace transforms
of the distributions) will take complex values.

Some fast references before we take off. The distributional Laplace transform is intro-
duced in most medium/advanced texts on the theory of distributions. The teaching text
of Laurent Schwartz [22] is a good introduction. The subject of vector valued distribu-
tions is much more involved (and there is the risk of wanting to know and understand it
all). François Trèves’s book on distributions [23] is the standard (but not easy to read)
reference. A compendium of this theory, with a different point of view, can be found in
volume five of the English language edition of Robert Dautray and Jacques-Louis Lions’s
ambitious encyclopedia on theoretical and numerical continuum models [8].

Notation. Given a domain O, we will denote

(u, v)O :=

∫
O
u v (∇u,∇v)O :=

∫
O
∇u · ∇v,

‖u‖2
O := (u, u)O, ‖∇u‖2

O := (∇u,∇u)O, ‖u‖2
1,O := ‖u‖2

O + ‖∇u‖2
O.

We will make unannounced use of basic properties of the Sobolev space H1(O), the trace
operator and the concept of weak normal derivative (we will introduce the latter though).
If Γ is a Lipschitz curve/surface, we will use the angled bracket

〈ξ, η〉Γ :=

∫
Γ

ξ η dΓ

to denote the L2(Γ)-inner product and its extension as the H−1/2(Γ) × H1/2(Γ) duality
product. The H±1/2(Γ)-norms are denoted ‖ · ‖±1/2,Γ. As a general rule, all brackets
will be considered as bilinear (and not sesquilinear) forms, even if spaces include complex
valued functions.
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2.1 Causal tempered distributions

We first consider the Schwartz class

S(R) := {ϕ ∈ C∞(R) : pϕ(k) ∈ L∞(R) ∀k ≥ 0, ∀p ∈ P(R)},

where P(R) is the space of polynomials with complex coefficients. It is well known that
we can define a metric in S(R) that makes this space complete and such that convergence

ϕn → ϕ with respect to that metric is equivalent to convergence in L∞(R) of pϕ
(k)
n →

pϕ(k) for all k ≥ 0 and p ∈ P(R). It is quite obvious that differentiation and multiplication
by polynomials are continuous operators in the Schwartz class.

A tempered distribution with values in the Banach space X is a continuous linear map
f : S(R) → X. The action of f on a general element ϕ ∈ S(R) is denoted using angled
brackets 〈f, ϕ〉. A causal tempered distribution with values in X (these are the
ones we will be paying attention to) is a tempered X-valued distribution such that

〈f, ϕ〉 = 0 ∀ϕ ∈ S(R) such that suppϕ ⊂ (−∞, 0).

There is no commonly used notation for the set of causal tempered X-valued distributions.
To avoid continuous repetition of this long expression, we will write

f ∈ CT(X).

Some very simple examples. If a ∈ X, we can define the following two distributions

〈δ0 ⊗ a, ϕ〉 := ϕ(0) a, 〈δ̇0 ⊗ a, ϕ〉 := −ϕ̇(0) a.

Some functions are distributions. Many functions can be considered as causal tem-
pered distributions. For instance, if f : [0,∞)→ X is a continuous function, such that

‖f(t)‖X ≤ C (1 + tm) t ≥ 0,

we can define

〈f, ϕ〉 :=

∫ ∞
0

ϕ(t)f(t)dt. (2.1)

(Note that we are giving the same name to f as a function and as a distribution, which
is justified by proving that two different functions cannot define the same distribution.)
The integral has to be understood in the sense of Bochner, although with the regularity
assumed for f , this definition can be done as an improper Riemann integral. The definition
(2.1) can be used for f ∈ Lp((0,∞), X) for any 1 ≤ p ≤ ∞. When functions are used as
distributions they are automatically extended by zero for values t < 0.

Differentiation. If f is a causal tempered X-valued distribution, we define

〈ḟ , ϕ〉 := −〈f, ϕ̇〉,
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thus obtaining another element ḟ ∈ CT(X). (This is very simple to prove.) We will
sometimes write d

dt
f instead of ḟ . For instance,

d
dt

(δ0 ⊗ a) = δ̇0 ⊗ a.
We have to be careful with what we understand by differentiation, since this is an operator
that considers f as an entity defined for all t ∈ R even if it is zero for negative t. If, for
instance, we have a function f ∈ C1([0,∞), X) such that f is bounded and so is its
derivative f ′, then

ḟ = f ′ + δ0 ⊗ f(0),

that is, differentiation in the sense of distributions takes into account the jump across the
origin.

Composition with steady-state operators. Consider two Banach spaces X and Y
and a bounded linear operator A : X → Y . For f ∈ CT(X) we define

〈Af, ϕ〉 := A〈f, ϕ〉
and we obtain that Af ∈ CT(Y ). (Once more, this is very simple to prove.) In particular,
if X ⊂ Y with continuous embedding, every f ∈ CT(X) can be understood as f ∈ CT(Y ).

2.2 Distributional scattered waves

Let Γ be the boundary of a bounded Lipschitz domain Ω− ⊂ Rd. The exterior domain
Ω+ := Rd \Ω− will always be assumed to be connected, just to avoid some minor annoy-
ances. We will however accept the possibility that Ω− has several connected components,
since nothing is changed by this hypothesis.

The domain of the Laplacian. The space

H1
∆(Rd \ Γ) := {u ∈ H1(Rd \ Γ) : ∆u ∈ L2(Rd \ Γ)}

will be the natural environment for the definition of the layer potentials. The Laplace
operator ∆ that appears in the definition of this space is the Laplacian in the sense of
distributions in Rd \ Γ. To emphasize this fact, we write ∆u ∈ L2(Rd \ Γ), although
L2(Rd \ Γ) ∼= L2(Rd).

The space H1
∆(Rd \ Γ) is endowed with the norm

‖u‖2
∆ := ‖u‖2

Rd + ‖∇u‖2
Rd\Γ + ‖∆u‖2

Rd\Γ,

which makes it a Hilbert space. In this set we can define the interior and exterior traces
γ± : H1

∆(Rd \Γ)→ H1/2(Γ) and the interior and exterior normal derivatives ∂±ν : H1
∆(Rd \

Γ)→ H−1/2(Γ). These last ones are defined using Green’s formula:

〈∂νu−, γ−v〉Γ := (∆u, v)Ω− + (∇u,∇v)Ω− ∀v ∈ H1(Ω−),

〈∂νu+, γ+v〉Γ := −(∆u, v)Ω+ − (∇u,∇v)Ω+ ∀v ∈ H1(Ω+).

The jumps of the trace and normal derivative are also well defined (and define bounded
operators) in H1

∆(Rd \ Γ):

[[γu]] = γ−u− γ+u, [[∂νu]] = ∂−ν u− ∂+
ν u.
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Scattered waves around Γ. The set of solutions of the wave equation that we will
care about are

u ∈ CT(H1
∆(Rd \ Γ)) such that ü = ∆u. (2.2)

We need to clarify what is meant by the above equation. We know that ∆ : H1
∆(Rd\Γ)→

L2(Rd \Γ) is bounded. Therefore, if u ∈ CT(H1
∆(Rd \Γ)), then ∆u ∈ CT(L2(Rd \Γ)). As

mentioned in Section 2.1, the causal tempered H1
∆(Rd \ Γ)-valued distribution ü can be

understood as ü ∈ CT(L2(Rd \ Γ)). Therefore, the equality in (2.2) is that of two causal
tempered distributions with values in L2(Rd \ Γ).

A remark concerning initial conditions. The equation (2.2) is implicitly imposing
homogeneous initial conditions. If we want to represent a (smooth) function u : [0,∞)→
H1

∆(Rd \ Γ) such that u(0) = u0, u′(0) = v0 and ∆u(t) = u′′(t) for all t ≥ 0 (these time
derivatives are strong derivatives), we need to consider a causal distribution u such that

ü = ∆u+ δ0 ⊗ v0 + δ̇0 ⊗ u0.

This definition includes an extension by zero to t < 0 and not a possible extension by
solving the wave equation backwards. Once more, in (2.2) we are assuming homogeneous
boundary conditions in a sense that is not easy to specify, since there is no time regularity
assumed so far.

What we will end up showing. An aim of what follows is to show that solutions
of (2.2) are determined (with an explicit formula) by the causal distributions [[γu]] and
[[∂νu]]. This is what is known as Kirchhoff’s formula in the three dimensional case. We
will get to this in Section 3.5.

The exterior Dirichlet problem. An exterior causal solution of the Dirichlet problem
can be defined in several different ways. Dirichlet data is g ∈ CT(H1/2(Γ)). We can
consider a causal tempered H1

∆(Ω+)-valued distribution such that

ü = ∆u and γu = g,

with equalities as elements of CT(L2(Ω+)) and CT(H1/2(Γ)). We can also consider u as
in (2.2) satisfying the boundary conditions

γ+u = g, γ−u = 0.

(This is a way of taking u(t) = 0 in Ω− for all t, as we will see once we show the
corresponding existence and uniqueness results.) A third option consists of looking for u
as in (2.2) satisfying

γ+u = γ−u = g.

(This will lead to the single-layer representation of the exterior solution.) You might be
inclined to think that this is just fooling around with the interior domain, when all we
care about is what happens in Ω+. The truth is that for layer potentials, there is no inside
or outside: what layer potentials see is the domain minus the boundary Rd \ Γ.
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2.3 The Laplace transform

In this section we present the Laplace transform for causal tempered distributions. We
note that the Laplace transform can be defined for more general distributions than the
ones we are going to deal with. The positive half complex plane is denoted

C+ := {s ∈ C : Re s > 0}.

Laplace transform of a causal tempered distribution. Given f ∈ CT(X) we define
the Laplace transform of f as the function

C+ 3 s 7−→ F(s) := 〈f, exp(−s · )〉. (2.3)

It is easy to notice that even if the function t 7→ exp(−s t) is not an element of the
Schwartz class, the definition (2.3) still makes sense because of the causality of f . A fully
precise definition of the duality in (2.3) can be done by using a smooth version of the
Heaviside function:

h ∈ C∞(R) 0 ≤ h ≤ 1 h ≡ 1 in [−1/2,∞), h ≡ 0 in (−∞,−1].

We can then define F(s) := 〈f, h exp(−s · )〉 and prove that the particular choice of h
does not modify the definition of the Laplace transform. The Laplace transform of f is
also denoted L{f}. It is an analytic function of s ∈ C+.

Simple properties. The following two Laplace transforms are straightforward to com-
pute

L{δ0 ⊗ a} ≡ a, L{δ̇0 ⊗ a} = s a.

Also, it is easy to prove that
L{ḟ}(s) = sF(s). (2.4)

Again, for smooth bounded functions f : [0,∞) → X, the differentiation formula (2.4)
is taking care of the value at zero. If f ′ is the distribution associated to the function
f ′ : [0,∞) → X, (2.4) is just a compact way of writing the much more popular formula
(for functions)

L{f ′}(s) = sF(s)− f(0).

Finally, if f ∈ CT(X) and A ∈ B(X, Y ), then

L{Af}(s) = AF(s), (2.5)

as can be easily verified.
An important result is the statement of injectivity of the Laplace transform (which is

the main reason why it can be used as a transform): if f ∈ CT(X) satisfies that F(s) = 0
for all s ∈ C+, then f = 0.
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2.4 Potentials in the Laplace domain

A first simple use of the Laplace transform gives uniqueness of solution to some wave
propagation problems around Γ.

Proposition 2.4.1. Let

u ∈ CT(H1
∆(Rd \ Γ)) such that ü = ∆u

with equality as causal tempered L2(Rd \ Γ)-valued distributions. If

[[γu]] = 0, [[∂νu]] = 0, (2.6)

–as H1/2(Γ)- and H−1/2(Γ)-valued distributions–, then u = 0.

Proof. Note that U(s) ∈ H1
∆(Rd \ Γ) satisfies

s2U(s) = ∆U(s) in Rd \ Γ

and
[[γU(s)]] = 0 [[∂νU(s)]] = 0

for all s ∈ C+. (To see this, we just need to apply steady-state bounded operators to the
Laplace transform and use (2.5).)

Applying Green’s Theorem (the definition of the weak normal derivatives), we easily
prove that∫

Rd\Γ
|∇U(s)|2 + s2|U(s)|2 = 〈∂−ν U(s), γ−U(s)〉Γ − 〈∂+

ν U(s), γ+U(s)〉Γ = 0.

Therefore

0 = Re
(
s
(∫

Rd\Γ
|∇U(s)|2 + s2|U(s)|2

))
= (Re s)

(
‖∇U(s)‖2

Rd\Γ + |s|2‖U(s)‖2
Rd\Γ

)
,

which implies that U(s) = 0 for all s ∈ C+. The injectivity theorem for the Laplace
transform implies that u = 0.

Towards a definition of the single layer potential. Formally, the single layer po-
tential u = S ∗ λ is defined as the solution of a transmission problem. If λ is a causal
tempered H−1/2(Γ)-valued distribution, we can think of finding u ∈ CT(H1

∆(Rd \Γ)) such
that

ü = ∆u, [[γu]] = 0, [[∂νu]] = λ. (2.7)

In the next chapter, when we get to return to the time domain, we will see that problem
(2.7) does actually give a correct definition of the retarded single layer potential.

28



The single layer potential in the Laplace domain. If u is a solution of (2.7), then
for all s ∈ C+, U(s) ∈ H1

∆(Rd \ Γ) satisfies

∆U(s)− s2U(s) = 0 in Rd \ Γ, [[γU(s)]] = 0 [[∂νU(s)]] = Λ(s). (2.8)

However, the solution of (2.8) can be expressed using a single layer potential associated
to the differential operator ∆− s2. For smooth enough densities λ : Γ→ C (λ ∈ L2(Γ) is
enough), we define

S(s)λ :=

∫
Γ

E( · ,y; s)λ(y) dΓ(y), (2.9)

where

E(x,y; s) :=


ı
4
H

(1)
0 (ıs|x− y|) (d = 2),

e−s |x−y|

4π|x− y|
(d = 3),

(2.10)

is the fundamental solution of ∆ − s2. The integral formula (2.9) can be extended to
any λ ∈ H−1/2(Γ). For any s ∈ C+, S(s) defines a bounded operator S(s) : H−1/2(Γ) →
H1

∆(Rd \ Γ) such that u = S(s)λ is the unique solution of

∆u− s2u = 0 in Rd \ Γ, [[γu]] = 0, [[∂νu]] = λ.

Therefore
U(s) = S(s)Λ(s) s ∈ C+. (2.11)

Once again, we will have to wait until the next section to take an inverse Laplace transform
in (2.11) and use it to give a definition of the layer potential in the time domain. For
correct definitions of layer potentials and boundary integral operators for elliptic problems,
the reader is referred to the very elegant presentation of Martin Costabel in [7]. The entire
theory is presented in great detail in the often quoted monograph of Willian McLean on
elliptic systems and their boundary integral representations [18].

The single layer operator. If our starting point is the Dirichlet problem:

u ∈ CT(H1
∆(Rd \ Γ)), ü = ∆u, γ+u = γ−u = g,

where g ∈ CT(H1/2(Γ)), we can use the Laplace transform to note that, if such u exists,
then

U(s) = S(s)Λ(s),

where Λ : C+ → H−1/2(Γ) is given at each s ∈ C+ as the solution of the boundary integral
equation

V(s)Λ(s) = G(s),

where
H−1/2(Γ) 3 λ 7−→ V(s)λ := γ±S(s)λ.

In Section 2.6 we will give bounds (in terms of s) for the norms S(s), V(s) and V−1(s).
These will be used to prove estimates in the time domain, once we have an inversion
formula.
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Changing the background velocity. In the previous definitions we have taken c = 1.
It is actually very simple to modify the speed of waves to another value of c. Taking the
Laplace transform of c−2ü = ∆u, it is clear that we get to the equation ∆u− (s/c)2u = 0.
Therefore, the layer potential and operator at this velocity are simply S(s/c) and V(s/c).

2.5 The energy norm

The key to understanding the single layer potential and operator in the time domain is
the correct analysis of the Laplace transformed potential S(s) and its associated boundary
integral operator V(s) = γ±S(s) for every s ∈ C+. For short, we will often write

σ := Re s.

We start with some notation. For c > 0, we will write

c := min{1, c},

and we consider the norms

|||u|||2c,O := ‖∇u‖2
O + c2‖u‖2

O.

We also consider the bilinear form

as,O(u, v) := (∇u,∇v)O + s2(u, v)O

and note the following simple properties:

|as,O(u, v)| ≤ |||u||||s|,O|||v||||s|,O ∀u, v ∈ H1(O), (2.12)

Re
(
e−ıArg sas,O(u, u)

)
=

σ

|s|
|||u|||2|s|,O ∀u ∈ H1(O). (2.13)

Also

σ‖u‖1,O ≤ |||u||||s|,O ≤
|s|
σ
‖u‖1,O ∀u ∈ H1(O), (2.14)

where we have used that

max{1, |s|}min{1,Re s} ≤ |s| ∀s ∈ C+. (2.15)

The following careful lifting property, due to Alain Bamberger and Tuong Ha–Duong,
appears (in a slightly different language) in [2]. Its proof relies on classical Sobolev space
techniques: use a partition of unity, map to a half space and use the Fourier representation
of Sobolev spaces in free space.

Proposition 2.5.1. Let O be a Lipschitz domain. There exists CO > 0 such that for all
ξ ∈ H1/2(∂O) and c > 0, the solution u ∈ H1(O) of the Dirichlet problem

−∆u+ c2u = 0 in O,
γu = ξ on ∂O

can be bounded by
|||u|||c,O ≤ COmax{1, c}1/2‖ξ‖1/2,∂O.
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As a consequence, we obtain a bound for the normal derivative of the solution of
∆u− s2u = 0 for s ∈ C+: [2, 13].

Proposition 2.5.2. Let O be a Lipschitz domain and let CO > 0 be the constant of
Proposition 2.5.1. If s ∈ C+ and u ∈ H1

∆(O) satisfies ∆u− s2u = 0 in O, then

‖∂νu‖−1/2,∂O ≤ CO

(
|s|
σ

)1/2

|||u||||s|,O.

Proof. Let ξ ∈ H1/2(∂O) and consider v ∈ H1(O) satisfying

∆v − |s|2v = 0, γv = ξ.

Then,

|〈∂νu, ξ〉∂O| =
∣∣(∇u,∇v)O + s2(u, v)O

∣∣ (since ∆u− s2u = 0)

= |as,O(u, v)|
≤ |||u||||s|,O|||v||||s|,O (by (2.12))

≤ COmax{1, |s|}1/2|||u||||s|,O‖ξ‖1/2,∂O (by Proposition 2.5.1)

≤ CO

(
|s|
σ

)1/2

|||u||||s|,O‖ξ‖1/2,∂O. (by (2.15))

Therefore

‖∂νu‖−1/2,∂O = sup
0 6=ξ∈H1/2(∂O)

|〈∂νu, ξ〉∂O|
‖ξ‖1/2,∂O

≤ CO

(
|s|
σ

)1/2

|||u||||s|,O,

and the proof is finished.

2.6 Bounds in the resolvent set

We start with an ellipticity estimate [2, 13] for V(s). A time domain version of it will be
given in Section 3.7.

Proposition 2.6.1. There exists CΓ > 0 such that for all s ∈ C+

Re
(
eıArg s〈λ,V(s)λ〉Γ

)
≥ CΓ

σσ

|s|2
‖λ‖2

−1/2,Γ ∀λ ∈ H−1/2(Γ).

Therefore V(s) : H−1/2(Γ)→ H1/2(Γ) is invertible and

‖V(s)−1‖H1/2(Γ)→H−1/2(Γ) ≤ C−1
Γ

|s|2

σσ
.
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Proof. The proof of this result relies on the results of Section 2.5 together with the under-
standing of V(s) in terms the solution of a transmission problem, a technique that goes
back (at least) to the pioneering work of Jean–Claude Nédélec and Jacques Planchard [19]
for the single layer operator of the Laplace equation. Let λ ∈ H−1/2(Γ) and u = S(s)λ.
Then u ∈ H1

∆(Rd \ Γ) is the unique solution of the transmission problem

∆u− s2u = 0 in Rd \ Γ [[γu]] = 0, [[∂νu]] = λ (2.16)

and
V(s)λ = γ±u. (2.17)

Therefore

〈λ,V(s)λ〉Γ = 〈∂−ν u, γ−u〉Γ − 〈∂+
ν u, γ

+u〉Γ (by (2.16) and (2.17))

= (∇u,∇u)Rd\Γ + s2(u, u)Rd\Γ (since ∆u− s2u = 0)

= as,Rd\Γ(u, u).

Then

Re
(
eıArgs〈λ,V(s)λ〉Γ

)
= Re

(
e−ıArgsas,Rd\Γ(u, u)

)
=

σ

|s|
|||u|||2|s|,Rd\Γ (by (2.13))

≥ σ

|s|
σ

|s|
(C2

Ω−‖∂−ν u‖2
−1/2,Γ + C2

Ω+‖∂+
ν u‖2

−1/2,Γ) (by Prop 2.5.2)

≥ CΓ
σσ

|s|2
‖λ‖2

−1/2,Γ (λ = [[∂νu]]).

This coercivity estimate proves invertibility of V(s) by a Lax-Milgram argument and a
bound for the inverse of V(s).

Proposition 2.6.2. There exists CΓ > 0 such that for all s ∈ C+

‖S(s)λ‖1,Rd\Γ ≤ CΓ
|s|
σσ2
‖λ‖−1/2,Γ ∀λ ∈ H−1/2(Γ) (2.18)

and

‖V(s)‖H−1/2(Γ)→H1/2(Γ) ≤ C2
Γ

|s|
σσ2

. (2.19)

Finally, there exists C ′Γ > 0 such that for all s ∈ C+,

‖∂±ν S(s)λ‖−1/2,Γ ≤ C ′Γ
|s|3/2

σσ3/2
‖λ‖−1/2,Γ ∀λ ∈ H−1/2(Γ). (2.20)

Proof. Let λ ∈ H−1/2(Γ) and u = S(s)λ. Then

σ

|s|
σ2‖u‖2

1,Rd\Γ ≤
σ

|s|
|||u|||2|s|,Rd\Γ (by (2.14))

= Re
(
eıArg s〈λ,V(s)λ〉Γ

)
(proof of Prop 2.6.1)

≤ ‖λ‖−1/2,Γ‖γu‖1/2,Γ (γu = V(s)λ)

≤ CΓ‖λ‖−1/2,Γ‖u‖1,Rd\Γ. (CΓ = ‖γ‖)

32



This proves (2.18) and therefore (2.19). Note finally that

‖∂±ν u‖2
−1/2,Γ ≤ DΓ

|s|
σ
|||u|||2|s|,Rd\Γ (by Proposition 2.5.2)

≤ CΓDΓ
|s|
σ

|s|
σ
‖λ‖−1/2,Γ‖V(s)λ‖1/2,Γ (see above)

≤ C2
ΓDΓ

|s|3

σ2σ3
‖λ‖2

−1/2,Γ (by (2.19)),

which completes the proof.

Proposition 2.6.3. For all s ∈ C+,

‖S(s)λ‖∆ ≤ 2CΓ
|s|2

σσ3
‖λ‖−1/2,Γ ∀λ ∈ H−1/2(Γ),

where CΓ is the constant of Proposition 2.6.2.

Proof. Let u = S(s)λ. Then, by the arguments of the proof of Proposition 2.6.1 and by
Proposition 2.6.2,

|||u|||2|s|,Rd\Γ ≤
|s|
σ
|〈λ,V(s)λ〉Γ| ≤ C2

Γ

|s|2

σ2σ2
‖λ‖2

−1/2,Γ.

Therefore, since ∆u = s2u, we can bound

‖∆u‖Rd\Γ = ‖s2u‖Rd\Γ ≤ |s||||u||||s|,Rd\Γ ≤ CΓ
|s|2

σσ
‖λ‖−1/2,Γ. (2.21)

The result is then a consequence of (2.18) and (2.21) with the overestimate 1
σ

+ |s| ≤
2 |s|
σ2 .

2.7 Appendix: Proof of the lifting lemma

In this section we give a proof of Proposition 2.5.1. This is done in three steps: lifting in
the half space, lifting in the half space with compact support, and mapping to a general
domain. We will denote

Rd
+ := Rd−1 × (0,∞), ∂◦Rd = Rd−1 × {0},

and γ◦ : H1(Rd
+)→ H1/2(Rd−1) for the trace operator. We will write Rd 3 x = (x̃, xd) ∈

Rd−1 × R,

Lemma 2.7.1. Let ξ ∈ H1/2(Rd−1) ≡ H1/2(∂◦Rd) and let w ∈ H1(Rd
+) be the solution of

−∆w + c2w = 0 in Rd
+, (2.22a)

γ◦w = ξ on ∂◦Rd. (2.22b)

Then
‖∇w‖2

Rd+
+ c2‖w‖2

Rd+
≤ (2π)d−1 max{1, c}‖ξ‖2

1/2,Rd−1 .
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Proof. Using a density argument (for smooth functions) it is easy to show that the (d−1)-
variable Fourier transform

w̆(ω, xd) :=

∫
Rd−1

e−ıω·x̃w(x̃, xd)dx̃

transforms L2(Rd
+) into itself. Again with a density argument, we can prove that the

solution of (2.22) is in the anisotropic Sobolev space H̆ := {v ∈ L2(Rd
+) : ∂xdv ∈ L2(Rd

+)}
and satisfies

−∂xdxdw̆ + (|ω|2 + c2)w̆ = 0 in Rd
+,

γ̆0w̆ = ξ̂ on ∂◦Rd,

where γ̆◦ : H̆ → L2(Rd−1) is the associated one-dimensional trace operator and ξ̂ is the
Fourier transform of ξ. Therefore

w̆(ω, xd) = ξ̂(ω)e−xd(|ω|2+c2)1/2

.

In other words, we can prove that

w(x̃, xd) =
1

(2π)d−1

∫
Rd−1

eıω·x̃ξ̂(ω)e−xd(|ω|2+c2)1/2

dω

is the solution operator corresponding to problem (2.22). Using the Plancherel identity
corresponding to the transform w 7→ w̆, we can easily justify the following:

‖∇w‖2
Rd+

+ c2‖w‖2
Rd+

= (2π)d−1

∫
Rd+

(
|∂xdw̆(ω, xd)|2 + (c2 + |ω|2)|w̆(ω, xd)|2

)
dωdxd

= (2π)d−1

∫
Rd+

(
2(c2 + |ω|2)|ξ̂(ω)|2e−2xd(c2+|ω|2)1/2

)
dωdxd

= (2π)d−1

∫
Rd−1

(c2 + |ω|2)1/2|ξ̂(ω)|2dω

≤ (2π)d−1 max{1, c}
∫
Rd−1

(1 + |ω|2)1/2|ξ̂(ω)|2dω

= (2π)d−1 max{1, c}‖ξ‖2
1/2,Rd−1 .

Note that the last equality is due to the Fourier transform representation of the space
H1/2(Rd−1).

Lemma 2.7.2. Let r < 1 and

H1/2
r (Rd−1) := {ξ ∈ H1/2(Rd−1) : supp ξ ⊂ B(0; r)}.

Consider the following sets

f := B(0; 1)× (−1, 1) ⊂ Rd, f+ := f ∩ Rd
+, ∂◦f := f ∩ ∂◦Rd = B(0; 1)× {0},
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and the Sobolev space H1
? (f+) := {u ∈ H1(f+) : γu = 0 in ∂f+ \ ∂◦f}. For every

c > 0, there exists a bounded operator γ+
◦ : H

1/2
r (Rd−1)→ H1

? (f+) satisfying

γ◦γ
+
◦ ξ = ξ ∀ξ ∈ H1/2

r (Rd−1)

and
‖∇v‖2

f+
+ c2‖v‖2

f+
≤ C max{1, c}‖ξ‖2

1/2,Rd−1 , v = γ+
◦ ξ

where C > 0 is independent of c.

Proof. Let ϕ ∈ D(Rd) satisfy: 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in B(0; r)× (−1/2, 1/2) and suppϕ ⊂ f
if. We then define γ+

◦ ξ := ϕw, where w solves (2.22) with max{1, c} instead of c. The
rest of the proof is left as an exercise.

Lemma 2.7.3. Let O be a Lispchitz domain. For all c > 0 there exists an operator
γ+ : H1/2(∂O)→ H1(O) such that

γγ+ξ = ξ ∀ξ ∈ H1/2(∂O)

and
‖∇v‖2

O + c2‖v‖2
O ≤ C max{1, c}‖ξ‖2

1/2,∂Ω v = γ+ξ. (2.23)

Proof. Let f,f+ and ∂◦f be as in Lemma 2.7.2. We can then find open sets Ωj and
Lipschitz maps with Lipschitz inverses χj : f → Ωj such that {Ω1, . . . ,ΩM} is a cover
of ∂Ω with χj mapping f+ into Ωj ∩ O and ∂◦f into Ωj ∩ ∂O. To this covering of ∂O
we associate smooth compactly supported functions {ϕ1, . . . , ϕm} such that suppϕj ⊂ Ωj

and
∑

j ϕj ≡ 1 in a neighborhood of ∂O. The functions ϕ̃j := ϕj ◦ χj|∂◦f are compactly
supported in B(0; 1) ≡ ∂◦f+ and we can therefore find r > 0 such that

supp ϕ̃j ⊂ B(0; r) j = 1, . . . ,M.

Therefore, the functions

ξ̃j := ϕ̃j(ξ ◦ χj|∂◦f) = (ϕj ξ) ◦ χj|∂◦f

can be extended by zero to Rd−1 \B(0; 1) and are thus elements of the space H
1/2
r (Rd−1)

in Lemma 2.7.2. Finally we define

γ+ξ :=
M∑
j=1

(γ+
◦ ξ̃j) ◦ Ξj, (2.24)

where γ+
◦ is the lifting of Lemma 2.7.2, Ξj : Ωj ∩O → f+ is the inverse of χj|f+ and the

functions (γ+
◦ ξ̃j) ◦Ξj : Ωj ∩O → R are extended by zero to the rest of O. The rest of the

proof is left as an exercise.

Proof of Proposition 2.5.1. The solution of the Dirichlet problem

−∆u+ c2u = 0 in O,
γu = ξ on ∂O

minimizes the quadratic functional ‖∇u‖2
O + c2‖u‖2

O among all elements of H1(O) such
that γu = ξ. Therefore, the result is a straightforward consequence of Lemma 2.7.3.
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2.8 Exercises

1. (Section 2.1) Tensor product distributions. Let T ∈ S ′(R) be any tempered
scalar distribution and let a ∈ X, where X is a Banach space. Show that u := T ⊗a
defined by

〈T ⊗ a, ϕ〉 := 〈T, ϕ〉S′(R)×S(R) a

is a tempered x-valued distribution.

2. (Section 2.1) A paradoxical example of distributions.

(a) Let χ be the characteristic function of the interval (0, 1). Show that the trav-
eling wave function u

u(t) := χ(· − t) : R→ R

is a tempered H2(R) valued distribution, even if as a function it never takes
values on H2(R). Hint. Note that 〈u, ϕ〉 = χ∗ϕ, where ∗ denotes convolution
in R.

(b) Extend the previous example to any χ ∈ L1(R) or χ ∈ L2(R).

(c) Show that
ü = ∂2

xu

as tempered distributions with values in L2(R). (Here ∂2
x : H2(R)→ L2(R) is

the distributional derivative that acts as a steady-state operator.) Hint. Note
that by definition 〈∂2

xu, ϕ〉 = ∂2
x〈u, ϕ〉.

3. (Section 2.1) Standing functions. Let χ ∈ H2(R) and define u(t) := χ for all t.
Show that u is a tempered H2(R)-valued dsitribution. Write u as a tensor product.
Show that if χ 6∈ H2(R), then u is not an H2(R)-valued distribution.

4. (Section 2.1) Time-harmonic waves. Let ω > 0. Consider the function φω(t) :=
exp(−ıωt) and v ∈ H1

∆(Ω) satisfy ∆v + ω2v = 0. Show that the H1
∆(Ω)-valued

distribution u := φω ⊗ v satisfies the wave equation

ü = ∆u,

with equality as tempered (non-casual) distributions with values in L2(Ω).

5. (Section 2.1) The passage of a plane wave. Consider a function χ ∈ L∞(R), a
bounded domain Ω ∈ Rd and a fixed direction d ∈ Rd (with |d| = 1). For t ∈ R, we
define u(t) : Ω→ R as

u(t)(x) := χ(x · d− t) x ∈ Ω.

(a) Show that u is an H2(Ω)-valued tempered distribution. (Note that in principle
u is not an H2(Rd)-valued distribution, unless d = 1 and χ satisfies some
integrability conditions.)

(b) Show that ü = ∆u, with equality as tempered distributions with values in
L2(Ω).
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(c) Give conditions on χ and Ω that ensure that u is causal.

6. (Section 2.1) Show that if f ∈ CT(X) is causal and supp ḟ ⊂ [T,∞), then supp f ⊂
[T,∞). (Hint. The proof is the same as for scalar valued distributions. Choose a

fixed ϕ0 ∈ D(−∞, T ) such that
∫ T
−∞ ϕ0 = 1, and use the process

D(−∞, T ) 3 ψ 7−→ ϕ(t) :=

∫ t

−∞

(
ψ(τ)−

(∫ T

−∞
ψ
)
ϕ0(τ)

)
dτ ∈ D(−∞, T )

to show that 〈f, ψ〉 =
∫ T
−∞ ψ〈f, ϕ0〉 = 0).

7. (Section 2.7) Complete the proof of Lemma 2.7.2.

‖∇(ϕw)‖2
f+

+ c2‖ϕw‖2
f+
≤ 2‖∇w‖2

f+
+ (c2 + 2‖∇ϕ‖2

L∞(f+))‖w‖2
f+
.

This justifies why to use max{1, c} instead of c in (2.22).

8. (Section 2.7) Complete the proof of Lemma 2.7.3. Use the fact that

‖∇(w ◦ χj)‖2
Ωj∩O + c2‖w ◦ χj‖2

Ωj∩O ≤ C
(
‖∇w‖2

f+
+ c2‖w‖2

f+

)
∀w ∈ H1(f+).

Justify that the function defined in (2.24) is well defined as a function in H1(Ω),
that its trace is ξ and that the bound (2.23) is satisfied.
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Chapter 3

From Laplace domain to time
domain

The task of identifying what functions F(s) are Laplace transforms of causal functions
(distributions) is part of what is often called the Paley-Wiener Theorem, which is a
collection of results related to holomorphic extensions of the Fourier transform that can
be understood as two-sided Laplace transforms. Our presentation will first restrict the
kind of symbols (Laplace transforms) that we want to invert. Part of the material that
follows is adapted (and modified) from the PhD dissertation of Antonio Laliena [11].

3.1 Inversion of the Laplace transform

A class of symbols. Let X be a Banach space and µ ∈ R. We write F ∈ A(µ,X)
when F is an analytic function

F : C+ → X

such that
‖F(s)‖ ≤ CF(Re s)|s|µ ∀s ∈ C+

where CF : (0,∞)→ (0,∞) is a non-increasing function such that

CF(σ) ≤ C

σm
∀σ ∈ (0, 1]. (3.1)

Since 1 ≤ |s|/(Re s), it is clear that A(µ,X) ⊂ A(µ+ ε,X) for all ε > 0.
This class of symbols is a further refinement of a class introduced by Antonio Laliena

and myself in [13] motivated by the potentials and operators on the resolvent set (see
Section 2.6) and with a view on the analysis of Convolution Quadrature methods (see
Chapter 4). The class is more restrictive than the one dealt with by Christian Lubich
in his introduction to Convolution Quadrature methods for hyperbolic problems [16]. In
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Section 2.6, we have seen that

S ∈ A(1,B(H−1/2(Γ), H1(Rd \ Γ)),

S ∈ A(2,B(H−1/2(Γ), H1
∆(Rd \ Γ)),

V ∈ A(1,B(H−1/2(Γ), H1/2(Γ)),

V−1 ∈ A(2,B(H1/2(Γ), H−1/2(Γ)),

Kt ∈ A(3
2
,B(H−1/2(Γ), H−1/2(Γ)),

where
Kt(s) := {{∂νS(s)}} = 1

2
(∂−ν S(s) + ∂+

ν S(s)).

The strong inversion formula. Let F ∈ A(µ,X) with µ < −1. For any σ > 0 we
define

f(t) :=
1

2πı

∫ σ+ı∞

σ−ı∞
es tF(s)ds =

1

2π

∫ ∞
−∞

e(σ+ıω) tF(σ + ıω) dω. (3.2)

A simple computation shows that f(t) is well defined for all t ∈ R and that

‖f(t)‖ ≤ 1

2π
CF(σ)σ1+µeσtB

(
1
2
,−µ+1

2

)
, (3.3)

where B is the Euler beta function. A classical (but non-trivial) contour integration
argument can then be used to prove that f(t) is actually independent of σ > 0. Taking
the limit as σ →∞ in (3.3), we can prove that f(t) = 0 for t ≤ 0. For t ≥ 1, we can use
(3.3) with σ = t−1 and (3.1) to obtain that

‖f(t)‖ ≤ 1

2π
CF(t−1)t|1+µ|B

(
1
2
,−µ+1

2

)
≤ C tm+|1+µ|B

(
1
2
,−µ+1

2

)
,

which ensures polynomial growth of f(t) for large t. The Dominated Convergence The-
orem can also be used to prove that f is a continuous function of t. Therefore f is a
causal tempered distribution: f ∈ CT(X). Finally, it can be proved that L{f} = F. In
summary, we have sketched the proof of the following result:

Proposition 3.1.1. If F ∈ A(µ,X) with µ < −1, then F is the Laplace transform of a
continuous causal function f : R→ X with polynomial growth.

The general case is a consequence of the formula L{φ(k)} = skL{φ}, since F ∈ A(µ,X)
implies that s−kF ∈ A(µ − k,X). Proposition 3.1.1 can then be invoked for the symbol
s−kF(s) for sufficiently large k to obtain the following result:

Proposition 3.1.2. Let F ∈ A(µ,X) with µ ∈ R and let k := min{0, bµ + 1c}. Then
there exists a continuous causal function φ : R → X with polynomial growth such that
F = L{φ(k)}.

The set of all causal tempered distributions whose Laplace transforms are elements of
A(µ,X) for some µ can be studied similarly, starting with a simple case and proceeding
by differentiation. The key idea is the fact that for a continuous causal function such that

‖f(t)‖ ≤ C(1 + tm) ∀t ≥ 0,
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we can use the integral form of the Laplace transform and bound

‖F(s)‖ ≤ C

∫ ∞
0

e−tRe s(1 + tm)dt = C

(
1

Re s
+

m!

(Re s)m+1

)
.

Proposition 3.1.3. If f : R→ X is a continuous causal function with polynomial growth,
then F ∈ A(0, X). Therefore the set of symbols⋃

µ∈R

A(µ,X)

is the set of the Laplace transforms of continuous causal functions R→ X with polynomial
growth and their distributional derivatives.

For short, the set of all possible distributional derivatives of continuous causal X-
valued functions with polynomial growth will be given the notation TD(X) (TD as in
time domain). This is non-standard temporary notation, waiting to be improved.

3.2 From symbols to convolution operators

Let X and Y be two Banach spaces. Let a ∈ TD(B(X, Y )) ⊂ CT(B(X, Y )) be such that
A = L{a} ∈ A(µ,B(X, Y )). Some very general results on the theory of vector valued
distributions can be invoked to prove that given any causal (not necessarily tempered) X-
valued distribution g, the convolution a∗g is well defined as a causal Y -valued distribution.
Even if g is tempered, it does not follow that a∗g is tempered. However, the class TD(X)
is mapped to the class TD(Y ) by convolution with a and we will use this fact to give an
alternative (equivalent) definition of convolution.

If a ∈ TD(B(X, Y )) and g ∈ TD(X), we define

a ∗ g := L−1{A G}. (3.4)

It is easy to see that this definition makes sense by noticing that if G ∈ A(ν,X), then

‖A(s)G(s)‖Y ≤ ‖A(s)‖L(X,Y )‖G(s)‖X ≤ CA(Re s)CG(Re s)|s|µ+ν .

An important detail concerns the preservation of some kind of delayed causality, namely,
we want to prove that if g = 0 in (−∞, T ), then so is a ∗ g. For any T ∈ R, we can define
the translated distribution gT := g( · − T ) by

〈gT , ϕ〉 := 〈g, ϕ( · + T )〉.

If g ∈ CT(X) and T > 0, then gT ∈ CT(X) (causality is not lost by a displacement to
the right), but in general g−T will not be causal. The assertion that g−T is causal is an
equivalent way of saying that g = 0 in (−∞, T ).

Proposition 3.2.1. Let T > 0 and g ∈ TD(X) be such that supp g ⊂ [T,∞) and
a ∈ TD(B(X, Y )). Then (a ∗ g)−T = a ∗ g−T ∈ TD(Y ).
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Proof. The proof of this result follows from a collection of observations. First of all, note
that if g ∈ TD(X) and suppg ∈ [T,∞), it follows that g−T ∈ TD(X). (See exercises.)
Next,

‖G(s)‖ ≤ CG(Re s)|s|ν ∀s ∈ C+. (3.5)

Since g−T ∈ CT(X), then, by definition of the Laplace transform

L{g−T} = 〈g−T , exp(− · s)〉 = 〈g, exp(−s( · − T )〉 = es TG(s).

Since g−T ∈ TD(X), then

‖es TG(s)‖ = eRe s T‖G(s)‖ ≤ CG,T (Re s)|s|ν′ . (3.6)

In fact, comparing (3.5) and (3.6) it is clear that we can take ν = ν ′ and the hypothesis
on g−T is just one on the behavior of eσ TCG(σ). (Note also that displacement does not
modify the tempered character of a distribution and that the characterization of TD(X)
as a space of derivatives of causal functions with polynomial growth leaves clear that what
we are looking at is purely the preservation of causality by left displacement. More on
this in Section 3.6.)

Therefore L{a ∗ g−T} = A(s) (es TG(s)) = es TA(s)G(s) and thus

L{(a ∗ g−T )T} = e−s TL{a ∗ g−T} = A(s)G(s) ∈ A(µ+ ν, Y ).

Finally, we have proved that a ∗ g−T = (a ∗ g)−T and therefore (a ∗ g)−T is causal as we
wanted to prove.

The following result –taken from [9]– gives a taste of the kind of estimates that can
be obtained for convolution operators by working in the Laplace domain. It is based on
a result by Christian Lubich [16], restricted to the class of symbols we are working with,
and uses a couple of clever observations made by Lehel Banjai.

Proposition 3.2.2. Let A = L{a} ∈ A(µ,B(X, Y )) with µ ≥ 0 and let

k := bµ+ 2c ε := k − (µ+ 1) ∈ (0, 1].

If g ∈ Ck−1(R, X) is causal and g(k) is integrable, then a ∗ g ∈ C(R, Y ) is causal and

‖(a ∗ g)(t)‖ ≤ 2µCε(t)CA(t−1)

∫ t

0

‖(Pkg)(τ)‖dτ, (3.7)

where

Cε(t) :=
1 + ε

πε

tε

(1 + t)ε

and

(Pkg)(t) := e−t(e·g)(k)(t) =
k∑
`=0

(
k

`

)
g(`)(t).

41



Proof. If g(k) is causal and integrable, it is tempered. Furthermore, it is the derivative of
a continuous bounded causal function, and therefore g(k) ∈ TD(X). Moreover, L{Pkg} =
(1 + s)kG(s) ∈ A(0, X) (see Proposition 3.1.3) and therefore G ∈ A(−k,X) and

‖(1 + s)kG(s)‖ ≤
∫ ∞

0

‖(Pkg)(τ)‖dτ ∀s ∈ C+. (3.8)

A simple bound shows now that A G ∈ A(µ−k, Y ) and because µ−k = −(1+ε) < −1, it
follows from Proposition 3.1.1 that a∗g is continuous and causal. We can bound (a∗g)(t)
using the strong form of the inversion formula, proceeding as follows:

‖(a ∗ g)(t)‖ ≤ eσ t

2π

∫ ∞
−∞
‖A(σ + ıω)G(σ + ıω)‖dω (by (3.2))

≤ eσt

2π
CA(σ)

∫ ∞
−∞
‖(σ + ıω)µG(σ + ıω)‖dω (A ∈ A(µ))

≤ eσt

2π
CA(σ) max

Re s=σ
‖(1 + s)kG(s)‖

∫ ∞
−∞

|σ + ıω|µ

|1 + σ + ıω|k
dω

≤ eσt

π
CA(σ)

∫ ∞
0

|σ + ıω|µ

|1 + σ + ıω|k
dω

∫ ∞
0

‖(Pkg)(τ)‖dτ. (by (3.8))

We next bound

C(σ) :=

∫ ∞
0

|σ + ıω|µ

|1 + σ + ıω|k
dω ≤

∫ σ

0

(2σ)µ

(1 + σ)k
dω +

∫ ∞
σ

(2ω)µ

ωk
dω

= (2σ)µ(1 + σ)1−k +
2µ

k − µ− 1
σ1−k+µ

= 2µ
(
σµ(1 + σ)1−k + ε−1σ−ε

)
≤ 2µ(1 + ε−1)σ−ε.

Taking σ = t−1 we obtain

‖(a ∗ g)(t)‖ ≤ 2µCε(t)CA(t−1)

∫ ∞
0

‖(Pkg)(τ)‖dτ,

which is a bound similar to (3.7) with ‖Pkg‖ integrated over (0,∞) instead of (0, t). Let
us fix t > 0 now and consider the function

p(τ) :=


g(τ), τ ≤ t,

e−τ
k−1∑
`=0

(τ − t)`

`!
(e·g)(`)(t), τ ≥ t.

Since p satisfies the same hypotheses as g, a ∗ p has the same properties as a ∗ g. Also
p − g vanishes in (−∞, t) and by Proposition 3.2.1 the continuous function a ∗ (g − p)
vanishes in (−∞, t) and therefore

‖(a ∗ g)(t)‖ = ‖(a ∗ p)(t)‖ ≤ 2µCε(t)CA(t−1)

∫ ∞
0

‖(Pkp)(τ)‖dτ

= 2µCε(t)CA(t−1)

∫ t

0

‖(Pkg)(τ)‖dτ,

due to the fact that Pkp = 0 in (t,∞).
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Warning words. Passage through the Laplace domain is an elegant and powerful way
of studying many convolution operators, but the direct and inverse transforms lose quite a
lot of information. For instance, if I : X → X is the identity operator, then δ0⊗ I defines
a distribution whose Laplace transform is the constant operator I, and it is therefore an
element of the class A(0,B(X,X)). It is clear that Proposition 3.2.2 (that needs k = 2)
is not giving the best possible bound of that style (a sort of Sobolev embedding theorem
in one variable). We have also seen an example (Section 2.6) of symbols V(s) and V−1(s),
reciprocally inverse, both of positive order.

3.3 Scattering by a sound-soft obstacle

The time domain single layer potential. By Proposition 2.6.3 and the preceding
theory, there exists S ∈ TD(B(H−1/2(Γ), H1

∆(Rd \ Γ))) such that L{S} = S. Therefore,
given λ ∈ TD(H−1/2(Γ)), the convolution

u = S ∗ λ

defines a causal tempered distribution with values in H1
∆(Rd \ Γ), that solves

ü = ∆u, [[γu]] = 0, [[∂νu]] = λ. (3.9)

(This can be seen by taking the Laplace transform U(s) = S(s)Λ(s) and applying the
properties of S(s).) Because equation (3.9) has at most a causal tempered solution (see
Proposition 2.4.1), S ∗ λ is characterized by the above transmission (and initial value)
problem.

Remark. For this presentation of the theory it is not relevant to know what S is. What
can be proved, using smooth densities λ (and a density argument), is that S ∗ λ can be
represented in integral form (see Chapter 1). The causal distribution S for d = 3 was
found out in [12]: to ϕ ∈ S(R), it associates the operator

H−1/2(Γ) 3 λ 7−→
∫

Γ

ϕ( · − y)

4π| · −y|
λ(y)dΓ(y) ∈ H1

∆(Rd \ Γ).

The retarded single layer operator. If we define V := γS (γ is here a steady-
state operator that is applied to the causal tempered distribution S), it follows that
V ∗ λ ∈ TD(H1/2(Γ)). We also know that L{V} = V. An integral expression of V ∗ λ can
be obtained by taking the trace of S ∗ λ.

Extracting information from the bounds. The following bounds have been proved
in Section 2.6:

‖S(s)‖H−1/2(Γ)→H1(Rd\Γ) ≤ C
|s|
σσ2

‖S(s)‖H−1/2(Γ)→H1
∆(Rd\Γ) ≤ C

|s|2

σσ3

‖V(s)‖H−1/2(Γ)→H1/2(Γ) ≤ C
|s|
σσ2

‖V−1(s)‖H1/2(Γ)→H−1/2(Γ) ≤ C
|s|2

σσ
.
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The first bound and Proposition 3.2.2 (k = 3, ε = 1) can be used to show that for λ
smooth enough

‖(S ∗ λ)(t)‖1,Rd ≤ C t
1+t

tmax{1, t2}
∫ t

0

‖(P3λ)(τ)‖−1/2,Γdτ.

Similarly (same Proposition, µ = 2, k = 4 and ε = 1)

‖(V−1 ∗ g)(t)‖−1/2,Γ ≤ C t
1+t

tmax{1, t}
∫ t

0

‖(P4g)(τ)‖1/2,Γdτ.

These inequalities correspond to the two steps of solving the Dirichlet problem

ü = ∆u γ+u = γ−u = g

with a boundary integral method: we first solve

V ∗ λ = g ⇐⇒ λ = V−1 ∗ g

and then input λ in the potential expression

u = S ∗ λ = S ∗ (V−1 ∗ g).

Associativity and more. The definition of convolution through the Laplace transform
proves that associativity is satisfied:

S ∗ (V−1 ∗ g) = (S ∗ V−1) ∗ g.

(Of course, the definition of S∗V−1 has to be done in a similar way.) To study the behavior
of the convolution with the B(H1/2(Γ), H1(Rd))-valued causal distribution S∗V−1, we have
to study the symbol S(s)V−1(s). In fact, we can prove that

‖S(s)V−1(s)‖H1/2(Γ)→H1(Rd) ≤ C
|s|3/2

σσ3/2
. (3.10)

Proposition 3.2.2 (µ = 3/2, k = 3, ε = 1/2) then yields:

‖u(t)‖1,Rd = ‖(S ∗ V−1 ∗ g)(t)‖1,Rd ≤ C t1/2

1+t1/2
tmax{1, t3/2}

∫ t

0

‖(P3g)(τ)‖1/2,Γdτ.

Proof of (3.10) Given ξ ∈ H1/2(Γ), the function u := S(s)V−1(s)λ is the solution of
the Dirichlet problem

∆u− s2u = 0 in Rd \ Γ, γ±u = ξ.

To give a bound of the norm of this function we decompose it as u = uξ + (u−uξ), where

∆uξ − |s|2uξ = 0 in Rd \ Γ γuξ = ξ,
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(this is the lifting of Proposition 2.5.1) and obviously u− uξ ∈ H1
0 (Rd \ Γ). Therefore

as(u, u− uξ) = 0. (3.11)

From here on, the proof collects a simple coercivity argument and the lifting property
Proposition 2.5.1. We first bound using coercivity and boundedness of the bilinear form
as:

|||u− uξ|||2|s|,Rd\Γ ≤
|s|
σ
|as(u− uξ, u− uξ)| (by (2.13))

=
|s|
σ
|as(−uξ, u− uξ)| (by (3.11))

≤ |s|
σ
|||uξ||||s|,Rd\Γ|||u− uξ||||s|,Rd\Γ. (by (2.12))

Next

|||u||||s|,Rd\Γ ≤ |||u− uξ||||s|,Rd\Γ + |||uξ||||s|,Rd\Γ

≤ 2|s|
σ
|||uξ||||s|,Rd\Γ (see above)

≤ 2|s|
σ
CΓ max{1, |s|}1/2‖ξ‖1/2,Γ (by Proposition 2.5.1)

≤ 2CΓ
|s|3/2

σσ1/2
‖ξ‖1/2,Γ,

which concludes the proof since σ‖u‖1,Rd\Γ ≤ |||u||||s|,Rd\Γ.

Concerning V−1. Just some warning words about the notation V−1. In the Laplace
domain,

V−1(s)V(s) = I ∀s ∈ C+,

where I : H−1/2(Γ) → H−1/2(Γ) is the identity operator. When we take the inverse
Laplace transform, we obtain

V−1 ∗ V = δ0 ⊗ I,
that is, the tempered distribution V−1 is a convolutional inverse of V , which somehow
justifies this notation. It is not an inverse of V : S(R)→ B(H−1/2(Γ), H1/2(Γ)) though.

3.4 The double layer potential

In the Laplace domain, the double layer potential is defined with the integral form

H1/2(Γ) 3 ξ 7−→ D(s)ξ :=

∫
Γ

∇yE( · ,y; s) · ν(y) ξ(y)dΓ(y). (3.12)

Here E is the fundamental solution of ∆−s2 (recall (2.10)). A simple computation shows
that

∇yE(x,y; s) · ν(y) =


−s

4
H

(1)
1 (ıs|x− y|)(x− y) · ν(y)

|x− y|
(d = 2)

e−s|x−y|

4π|x− y|
(x− y) · ν(y)

|x− y|

(
s+

1

|x− y|

)
(d = 3).
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For s ∈ C+, the double layer potential provides the unique solution u = D(s)ξ ∈ H1
∆(Rd \

Γ) to the transmission problem:

∆u− s2u = 0 in Rd \ Γ, [[γu]] = −ξ, [[∂νu]] = 0. (3.13)

The integral operators associated to D(s) are

K(s) := {{γD(s)}} W(s) := ∂±ν D(s).

We next collect some Laplace domain bounds related to these operators [3, 13]. The
techniques are very similar to those of the single layer operator (Section 2.6), and the
reader is encouraged to move on and try to find what are the associated time domain
bounds.

Proposition 3.4.1. There exist generic constants (all denoted CΓ) such that for all s ∈
C+:

Re
(
e−ıArg s〈W(s)ξ, ξ〉Γ

)
≥ CΓ

σσ2

|s|
‖ξ‖2

1/2,Γ ∀ξ ∈ H1/2(Γ), (3.14)

‖W(s)‖H1/2(Γ)→H−1/2(Γ) ≤ CΓ
|s|2

σσ
(3.15)

‖W−1(s)‖H−1/2(Γ)→H1/2(Γ) ≤ CΓ
|s|
σσ2

(3.16)

‖D(s)‖H1/2(Γ)→H1(Rd\Γ) ≤ CΓ
|s|3/2

σσ3/2
(3.17)

‖D(s)‖H1/2(Γ)→H1
∆(Rd\Γ) ≤ CΓ

|s|5/2

σσ5/2
. (3.18)

Proof. Let ξ ∈ H1/2(Γ) and u := D(s)ξ. Since [[γu]] = −ξ and ∂±ν u = −W(s)ξ, the
definition of the weak normal derivatives yields

〈W(s)ξ, ξ〉Γ = 〈−∂νu,−[[γu]]〉Γ = 〈∂−ν u, γ−u〉Γ − 〈∂+
ν u, γ

+u〉Γ = as(u, u) (3.19)

and therefore

Re
(
e−ıArg s〈W(s)ξ, ξ〉Γ

)
=

σ

|s|
|||u|||2|s|,Rd\Γ (coercivity of as: (2.13))

≥ σσ2

|s|
‖u‖2

1,Rd\Γ (by (2.14))

≥ ‖γ‖−2σσ
2

|s|
‖ξ‖1/2,Γ, (trace theorem)

which proves (3.14) and therefore (3.16). Going back to (3.19) and using the bound for
the normal derivative given in Proposition 2.5.2, it follows that

|||u|||2|s|,Rd\Γ ≤
|s|
σ
‖∂νu‖−1/2,Γ‖ξ‖1/2,Γ ≤ CΓ

|s|3/2

σσ1/2
|||u||||s|,Rd\Γ‖ξ‖1/2,Γ
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and therefore, since

‖u‖1,Rd\Γ ≤
1

σ
|||u||||s|,Rd\Γ ‖∆u‖Rd\Γ = |s|‖su‖Rd\Γ ≤ |s||||u||||s|,Rd\Γ,

and

‖W(s)ξ‖−1/2,Γ = ‖∂νu‖−1/2,Γ ≤ CΓ
|s|1/2

σ1/2
|||u||||s|,Rd\Γ

the proof of (3.15), (3.17), and (3.18) follows readily.

As a direct consequence of the general theory we have established for our class of
symbols in the Laplace domain, we can define time domain operator valued distributions

D ∈ TD(B(H1/2(Γ), H1
∆(Rd \ Γ))),

K ∈ TD(B(H1/2(Γ), H1/2(Γ))),

W ∈ TD(B(H1/2(Γ), H−1/2(Γ))),

W−1 ∈ TD(B(H−1/2(Γ), H1/2(Γ))).

Note that by definition (recall (3.13)) if ξ ∈ TD(H1/2(Γ), then u := D ∗ ξ is the unique
(causal tempered) solution of

ü = ∆u, [[γu]] = −ξ, [[∂νu]] = 0. (3.20)

3.5 Kirchhoff’s formula

The previous results leave us in situation to derive the entire Calderón (boundary integral)
calculus for the wave equation. It all starts with the weak version of Kirchhoff’s formula:

Proposition 3.5.1. Causal solutions of the wave equation

u ∈ TD(H1
∆(Rd \ Γ) ü = ∆u (3.21)

(equality as casual tempered distributions with values in L2(Rd \Γ)) can be represented as

u = S ∗ [[∂νu]]−D ∗ [[γu]]. (3.22)

Proof. As already mentioned in Chapter 1, the keys to this representation are a uniqueness
theorem for transmission problems (that is the role played by Proposition 2.4.1) and the
interpretation of layer potentials as solutions of transmission problems, i.e., (3.9) for the
single layer potential and (3.20) for the double layer potential. Given u satisfying (3.21)
we can define

ϕ := [[γu]] ∈ TD(H1/2(Γ)) and λ := [[∂νu]] ∈ TD(H−1/2(Γ))

and note that the distribution

v := u− S ∗ λ+D ∗ ϕ ∈ TD(H1
∆(Rd \ Γ))

is a causal solution of
v̈ = ∆u [[γv]] = 0 [[∂νv]] = 0

and therefore v = 0.
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Several useful formulas follows from the representation (3.22) and the definition of the
integral operators. For instance, for any solution of (3.21) we can write[

{{γu}}
{{∂νu}}

]
=

[
V −K
Kt W

]
∗
[

[[∂νu]]
[[γu]]

]
.

[[γ · ]] [[∂ν · ]]

S ∗ λ 0 λ

D ∗ ϕ −ϕ 0

{{γ · }} {{∂ν · }}

S ∗ λ V ∗ λ Kt ∗ λ

D ∗ ϕ K ∗ ϕ −W ∗ ϕ

Table 3.1: The jump relations in two tables.

3.6 Another look at causality

There are several aspects to causality in the wave equation that are more or less hidden
in the Laplace transform. We have already seen that if data are delayed (their support
starts at time T > 0), so is the solution. (This was Proposition 3.2.1, which was just a
simple statement on the convolutional character of all our operators.) We next see how
finite speed of propagation is also observable in the Laplace transform. It all follows from
the following simple abstract result (which was also hidden in the proof of Proposition
3.2.1):

Proposition 3.6.1. Let F ∈ A(µ,X), F = L{f} and

(0,∞) 3 σ 7−→ C(σ) := sup
Re s≥σ

‖s−µF(s)‖.

If for some T > 0, the function C(σ)eσT is non-increasing, then f−T is causal.

Proof. Note that the function C(σ) is well defined, non-increasing and admits a rational
bound as σ → 0. (This is just a simple consequence of the fact that C ≤ CF.) If
we define G(s) := es TG(s), the above hypotheses imply that G ∈ A(µ,X). Let then
g ∈ L−1{G} ∈ TD(X). It is simple to see that

L{gT} = e−s TG(s) = F(s),

which means that gT = f and therefore f−T = g is causal.

Another way of checking the hypothesis of Proposition 3.6.1 is the following: if we can
write

‖F(s)‖ ≤ e−T Re sDF(Re s) |s|µ ∀s ∈ C+

for some T > 0, where DF is non-increasing and DF(σ) ≤ Cσ−m for σ ∈ (0, 1), then, f−T
is causal, that is, the temporal support of f is contained in [T,∞).

Given the intimate relationship between causality and finite speed of propagation, it is
not surprising that this delayed causality property shows how distance from the scatterer
Γ gives a delay in the arrival of the solution.
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Proposition 3.6.2. Let B ⊂ Rd be such that B ∩ Γ = ∅ and let

T := dist(B,Γ) := inf{|x− y| : x ∈ B, y ∈ Γ} > 0.

If
u ∈ TD(H1

∆(Rd \ Γ)) ü = ∆u,

then u−T |B is causal, that is, the temporal support of the distribution u|B is contained in
[T,∞).

Proof. Thanks to Kirchhoff’s formula, we only need to check that this delay property is
satisfied by single and double layer potentials. We will only give full details for the single
layer potential in three dimensions. The arguments in two dimensions are very similar.
The proof of the double layer potential is even simpler.

We are going to show that

sup
x∈B

∥∥∥∥ e−s|x− · |

4π|x− · |

∥∥∥∥
1/2,Γ

≤ e−σ Tα(T )
|s|1/2

σ1/2
, σ = Re s. (3.23)

Since for x 6∈ Γ, the layer potential S(s) admits the form

(S(s)λ)(x) = 〈λ, e−s|x− · |

4π|x− · |
〉Γ,

(S(s)λ is actually a C∞ function in Rd \ Γ), the bound (3.23) gives

‖S(s)λ‖H−1/2(Γ)→L2(B) ≤ C e−σ Tα(T )
|s|1/2

σ1/2

and therefore Proposition 3.6.1 shows that S ∗ λ, restricted to B, (this means that we
compose with the embedding operator H1(Rd \ Γ)→ L2(B)) is supported in [T,∞).

To show (3.23) let us first denote

f :=
e−s|x− · |

|x− · |
: Γ→ C.

Note that

‖f‖Γ ≤ |Γ|1/2‖f‖L∞(Γ) ≤
|Γ|1/2

T
e−σ T (3.24)

and that
‖f‖2

1,Γ = ‖f‖2
Γ + ‖∇Γf‖2

Γ ≤ |Γ|
(
‖f‖2

L∞(Γ) + ‖∇f‖2
L∞(Γ)

)
(3.25)

(the first gradient is tangential and the second one is not). Since

∇f(y) =
e−s|x−y|

|x− y|

(
s+

1

|x− y|

)
x− y

|x− y|
,

it is clear that

‖∇f‖L∞(Γ) ≤
e−σ T

T

(
|s|+ 1

T

)
. (3.26)
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Plugging (3.24) and (3.26) in (3.25) and bounding |s| + η ≤ 2|s|max{1, η}/σ, we can
bound

‖f‖1,Γ ≤ |Γ|1/2
e−σT

T

(
1 +

1

T

)
|s|
σ

and finally using an interpolation property of Sobolev space

‖f‖1/2,Γ ≤ ‖f‖1/2
Γ ‖f‖

1/2
1,Γ

we prove (3.23).

Incident waves. Similar bounds can be used to prove that the type of incident waves
(spherical and plane waves) can be used to provide data for scattering problems with very
weak conditions on the transmitted signal.

3.7 Coercivity in the time domain

The two coercivity properties we have obtained in the Laplace domain, namely (Proposi-
tion 2.6.1)

Re
(
eıArg s〈λ,V(s)λ〉Γ

)
≥ CΓ

σσ

|s|2
‖λ‖2

−1/2,Γ ∀λ ∈ H−1/2(Γ). (3.27)

and (Proposition 3.4.1)

Re
(
e−ıArg s〈W(s)ξ, ξ〉Γ

)
≥ CΓ

σσ2

|s|
‖ξ‖2

1/2,Γ ∀ξ ∈ H1/2(Γ),

can be rewritten as some kind of coercivity properties the associated boundary integral
operators in the time domain.

Plancherel’s Formula. Consider a real Hilbert space X, whose inner product is de-
noted 〈 · , · 〉X . Associated to X, there is a complex Hilbert space X + ıX: its corre-
sponding inner product can be constructed by separating real and imaginary parts. (We
will keep the bracket bilinear instead of sesquilinear though.) Given f ∈ L2(R, X), its
Fourier transform F{f} ∈ L2(R, X + ıX) is an extension of the operator (defined, for
instance, for compactly supported functions):

F{f}(η) =

∫ ∞
−∞

e−ıη tf(t)dt

(the integral is in the sense of Bochner in X). Plancherel’s Formula is the statement∫ ∞
−∞
〈F{f}(η),F{g}(η)〉Xdη =

1

2π

∫ ∞
−∞
〈f(t), g(t)〉Xdt,

which is actually in the basis of the possibility of defining F for functions in L2(R, X).
When X is the pivotal space of a Gelfand triple

Y ⊂ X ∼= X ′ ⊂ Y ′

(like H1/2(Γ) ⊂ L2(Γ) ⊂ H−1/2(Γ)), the result can be extended for f ∈ L2(R, Y ′) and
g ∈ L2(R, Y ).
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Laplace and Fourier. If f ∈ L2((0,∞), X) (extended by zero for negative t), we can
easily write

F(s) =

∫ ∞
0

e−s tf(t)dt = F{e−σtf(t)}(η) s = σ + ıη.

Therefore if A ∈ A(µ′, Y ′) and B ∈ A(µ, Y ), with µ + µ′ < −1, we can integrate the
duality

〈A(s),B(s)〉X
along a line Re s = σ (the fact that µ+ µ′ < −1 allows us to do that), and obtain∫ σ+ı∞

σ−ı∞
〈A(s),B(s)〉Xds =

1

2π

∫ ∞
0

e−2σt〈a(t), b(t)〉Xdt.

Coercivity for the single layer operator. We can then integrate the following ex-
pression, equivalent to (3.27),

Re
(
〈Λ(s),V(s)sΛ(s)〉Γ

)
≥ CΓσσ‖s−1/2Λ(s)‖2

−1/2,Γ

= CΓσσ(s−1/2Λ(s), s−1/2Λ(s))−1/2,Γ. (3.28)

(The bracket in the right hand side is the H−1/2(Γ)-inner product.) Formally, we obtain∫ ∞
0

e−2σ t〈λ(t), (V ∗ λ̇)(t)〉Γdt ≥ CΓσσ

∫ ∞
0

e−2σt‖∂−1/2λ(t)‖2
−1/2,Γdt, (3.29)

where ∂−1/2λ = L−1{s−1/2Λ(s)}.
We can keep track of the symbols, starting with

Λ ∈ A(µ,H−1/2(Γ))

so that

sV(s)Λ(s) ∈ A(µ+ 2, H1/2(Γ)) s−1/2Λ(s) ∈ A(µ− 1
2
, H−1/2(Γ)).

The requirements for integrating are different in the left and right hand sides of (3.28).
For the left hand side we need 2µ + 2 < −1, that is, µ < −3/2. For the right hand side,
it is enough with 2µ − 1 < −1 (µ < 0). This mismatch in time regularity was already
noticed in the seminal paper of Bamberger and Ha-Duong. In that work, some anisotropic
Sobolev spaces are introduced by freezing a particular value of σ. The kind of densities
they deal with are those causal distributions (that admit Laplace transform) such that
e−σ · λ̇ ∈ L2((0,∞), H−1/2(Γ)) and e−σ · V ∗ λ̇ ∈ L2((0,∞), H1/2(Γ)). With that Hilbert
space structure, (3.29) can be used as the starting point of a stability analysis for Galerkin
methods for equations

V ∗ λ = g,

based on the weak formulation∫ ∞
0

e−2σt〈µ(t), (V ∗ λ̇)(t)〉Γdt =

∫ ∞
0

e−2σt〈µ, ġ(t)〉Γdt.

Note that the type of Galerkin methods that we introduced in Section 1.7 did not include
the exponential factor. To the best of my knowledge, there is no theoretical support for
the elimination of this weight but experiments show that it is not needed.
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3.8 Exercises

1. (Section 3.1) In the following exercises we fill in the gaps of the proof of Proposition
3.1.1. Let F : C+ → X satisfy

‖F(s)‖ ≤ CF(Re s)|s|µ ∀s ∈ C+

where CF : (0,∞)→ (0,∞) is non-increasing, and consider the functions (for σ > 0)

fσ(t) :=
1

2πı

∫ σ+ı∞

σ−ı∞
estF(s)ds =

1

2π

∫ ∞
−∞

eσ+ıωF(σ + ıω)dω.

(a) Show that fσ is well defined and

‖fσ(t)‖ ≤ 1

2π
CF(σ)σ1+µeσt

∫ ∞
−∞

(1 + ω2)µ/2dω.

(b) Use the Dominated Convergence Theorem to show that fσ is a continuous
function of t.

(c) For fixed 0 < σ1 < σ2 and t ∈ R we consider the quantities

ε±R :=

∫ σ2±ıR

σ1±ıR
estF(s)ds = e±Rıt

∫ σ2

σ1

eωtF(ω ± ıR)dω.

Show that limR→∞ εR = 0. Use this and Cauchy’s Homology Theorem to show
that fσ1(t) = fσ2(t). We can then write f(t) := fσ(t).

(d) Use the previous result and the bound of (a) to show that when t < 0, f(t) = 0.

(e) Show that if CF(1/σ) has tempered growth as σ → ∞, then f : R → X
defines a causal tempered distribution. (Hint. As suggested in Section 3.1,
take σ = 1/t in the bound of (a).)

2. (Section 3.1) Assume that F : C+ → X satisfies

‖F(s)‖ ≤ CF(Re s)|s|µ ∀s ∈ C+

where CF : (0,∞)→ (0,∞) is non-increasing. Show that

1

2πı

∫ σ+ı∞

σ−ı∞

1

z − s
F(s)ds =

{
0 0 < Re z < σ
F(z) 0 < σ < Re z,

You can proceed as follows:

(a) If Re z < σ, show that the integral

1

2πı

∫ σ+ı∞

σ−ı∞

1

z − s
F(s)ds

does not depend on σ.
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(b) Using (a) and taking σ →∞, the first part of the result is proved.

(c) When 0 < σ < Re z, take σ′ > Re z, use Cauchy’s Representation Formula in
a closed rectangular contour with vertices σ ± ıR and σ′ ± ıR (with R large
enough so that z is enclosed by the contour) and a limiting argument to show
that

1

2πı

∫ σ+ı∞

σ−ı∞

1

z − s
F(s)ds = F (z) +

1

2πı

∫ σ′+ı∞

σ′−ı∞

1

z − s
F(s)ds.

Then use (b) to prove the result.

3. (Section 3.1) Let F satisfy the same hypotheses and in the previous two problems.
Show then that the Laplace transform of

f(t) :=
1

2πı

∫ σ+ı∞

σ−ı∞
estF(s)ds.

is F. (Hint. Use Problem 2.)

4. (Section 3.2) Show that if g ∈ TD(X) and supp g ⊂ [T,∞), then g−T ∈ TD(X).
This can be done in the time domain, by writing g = φ(k), where φ : R → X is
a continuous causal function with polynomial growth (Proposition 3.1.3) and then
showing that suppφ ⊂ [T,∞) (see Exercises in the previous chapter).

5. (Section 3.4) Using Propositions 3.4.1 and 3.2.2, give bounds for

‖(D ∗ ξ)(t)‖1,Rd , ‖(W ∗ ξ)(t)‖−1/2,Γ, and ‖(W−1 ∗ h)(t)‖1/2,Γ.

6. (Section 3.4). Find a bound of ‖D(s)W−1(s)‖H−1/2(Γ)→H1(Rd\Γ) and use to find
bounds for ‖(D ∗ W−1 ∗ h)(t)‖1,Rd\Γ. As a hint, prove that if u = D(s)W−1(s)h

where h ∈ H−1/2(Γ), then

as,Rd(u, v) = 〈h, γ+v − γ−v〉Γ ∀v ∈ H1(Rd \ Γ).

7. (Sections 3.3, 3.4, and 3.5) The exterior Dirichlet to Neumann operator DtN+(s) :
H1/2(Γ)→ H−1/2(Γ) is defined by

DtN+(s)ξ := ∂νu where

[
∆u− s2u = 0 in Ω+,
γ+u = ξ.

Its inverse is the Neumann to Dirichlet operator NtD+(s).

(a) Prove the following coercivity estimates

−Re
(
e−ıArg s〈DtN+(s)ξ, ξ〉Γ

)
≥ CΓ

σσ2

|s|2
‖ξ‖2

1/2,Γ ∀ξ ∈ H1/2(Γ), ∀s ∈ C+,

−Re
(
eıArg s〈λ,NtD+(s)λ〉Γ

)
≥ CΓ

σσ

|s|2
‖λ‖2

1/2,Γ ∀λ ∈ H−1/2(Γ), ∀s ∈ C+.

53



(b) Use the previous estimates to give bounds of

‖DtN+(s)‖H1/2(Γ)→H−1/2(Γ) and ‖NtD+(s)‖H−1/2(Γ)→H1/2(Γ).

(c) Write down the corresponding estimates for the time domain Dirichlet to Neu-
mann and Neumann to Dirichlet operators.

(d) Show that

DtN+(s) = (−1
2
I + Kt(s))V−1(s) = V−1(s)(−1

2
I + K(s))

(Hint. For the first identity use a single layer potential representation. For
the second one, use a direct boundary integral representation of the exterior
solution.)

8. (Section 3.6) Complete the proof of Proposition 3.6.2 by providing estimates for
the double layer potential in three dimensions and for the single and double layer
potentials in two dimensions. Note that in the two dimensional case you will need
to use estimates for the behavior of the Hankel functions H

(1)
0 and H

(1)
1 .

9. (Section 3.7) Using the coercivity estimate of the form

Re 〈W(s)ξ, sξ〉Γ ≥ CΓσσ
2‖ξ‖2

1/2,Γ ∀ξ ∈ H1/2(Γ),

derive a formal coercivity estimate in the time domain for the convolution operator
ξ 7→ W ∗ ξ. Write down what the corresponding variational formulation for the
problem W ∗ ξ = h would be.
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Chapter 4

Convolution Quadrature

Convolution quadrature is a discretization technique for causal convolutions and convo-
lution equations. Coming from a mathematical argument that might seem bizarre at the
beginning, this method ends up using data in the time domain but the Laplace transform
of the operator. This mixture of Laplace and time domain looks somewhat unnatural
but yields a general type of methods that can be easily used in black-box fashion. The
method and much of its initial development are due to Christian Lubich.

4.1 Discrete convolutions with CQ

The aim of this first section is to introduce in a simple and non-rigorous way one of
the convolution quadrature methods, based upon the backwards Euler formula. Let f :
[0,∞)→ B(X, Y ) be a (causal) operator-valued function for which the Laplace transform

L{f}(s) = F(s) :=

∫ ∞
0

e−s tf(t)dt

exists. Although this is not important at this point of our exposition, let us assume that
F(s) exists for all s ∈ C+ and that it decays fast enough so that the inversion formula

f(t) =
1

2πı

∫ σ+ı∞

σ−ı∞
es tF(s)ds

holds for all σ > 0 (see Section 3.1). Let now g : [0,∞)→ X. We first aim to approximate
the convolution f ∗ g : [0,∞)→ Y

(f ∗ g)(t) :=

∫ t

0

f(τ) g(t− τ)dτ.

At least formally (we are not going to verify conditions for Fubini’s theorem yet)

(f ∗ g)(t) =

∫ t

0

f(τ) g(t− τ) dτ

=

∫ t

0

(
1

2π ı

∫ σ+ı∞

σ−ı∞
esτ F(s)ds

)
g(t− τ)dτ

=
1

2π ı

∫ σ+ı∞

σ−ı∞
F(s)

(∫ t

0

esτg(t− τ) dτ

)
ds.
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Note now that the function

y(t; s) :=

∫ t

0

esτg(t− τ)dτ (4.1)

is the unique solution to the initial value problem (with values in X)[
y′ = s y + g t ≥ 0,

y(0) = 0.
(4.2)

The expression (4.1) is just the variation of constants formula for the initial value problem
(4.2).

Let us now consider a constant time-step grid in [0,∞)

0 = t0 < t1 < . . . < tn < . . . , tn := nκ.

We apply the backwards Euler method to (4.2)

yn − yn−1

κ
= s yn + gn, gn := g(tn).

Therefore

yn = yn(s) =
1

1− κ s
yn−1 +

κ

1− κ s
gn.

Instead of taking y0 = 0, we will take y−1 = 0 as starting value (which fits with the idea of
causality we have been exploring in previous chapters). Then, elementary algebra shows
that

yn(s) = κ
n∑

m=0

1

(1− κ s)m+1
gn−m,

which is a discrete version of ∫ tn

0

esτg(tn − τ)dτ.

Hence

(f ∗ g)(tn) =
1

2πı

∫ σ+ı∞

σ−ı∞
F(s)y(tn; s)ds

≈ 1

2πı

∫ σ+ı∞

σ−ı∞
F(s)yn(s)ds

=
n∑

m=0

(
κ

2πı

∫ σ+ı∞

σ−ı∞

1

(1− κ s)m+1
F(s)ds

)
gn−m.

We now turn our attention to what lies inside the bracket in the last expression

ωm(κ) :=
κ

2πı

∫ σ+ı∞

σ−ı∞

1

(1− κ s)m+1
F(s)ds

=
(−1)m

κm
−1

2πı

∫ σ+ı∞

σ−ı∞

1

(s− 1
κ
)m+1

F(s)ds

=
(−1)m

κm
1

m!
F(m)

(
1

κ

)
=

1

m!

dm

dζm

(
F

(
1− ζ
κ

)) ∣∣∣∣
ζ=0

.
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We have thus approximated the convolution f ∗g at the points tn by a discrete convolution

(f ∗ g)(tn) ≈
n∑

m=0

ωm(κ)gn−m, gn := g(tn) (4.3)

where

F

(
1− ζ
κ

)
=

∞∑
m=0

ωm(κ)ζm. (4.4)

As written in (4.3)-(4.4) the only needs to apply the method (even if it does not give a
good result!) to a particular convolution f ∗ g are the values of g at the discrete time
values and the possibility of obtaining the Taylor expansion (4.4).

Generalization. Assume that p(ζ) is analytic in a neighborhood of the origin and that
F is such that we can expand

F

(
p(ζ)

k

)
=

∞∑
m=0

ωm(k)ζm. (4.5)

In this case, (4.3) defines a new method to approximate convolutions. From the point of
view of approximation we will demand that p(ζ) ≈ log ζ in a sense to be determined and
that p is analytic near the origin. However, at this stage this is not needed. Since out
kind of F(s) is defined on C+, and we need the method for κ→ 0 (κ is the time-step and
we want it to be small), a reasonable hypothesis is

Re p(ζ) > 0, |ζ| < c0.

Composition of discrete convolutions. Assume that we have two different functions
f1 and f2 and we have expanded

F1

(
p(ζ)

κ

)
=

∞∑
m=0

ω1
m(κ)ζm, F2

(
p(ζ)

κ

)
=

∞∑
m=0

ω2
m(κ)ζm.

It is then simple to see that for any sequence {gn : n ≥ 0},

n∑
m=0

ω1
m(κ)

( n−m∑
`=0

ω2
` (κ)gn−m−`

)
=

n∑
m=0

ω12
m (κ)gn−m, ∀n

where

ω12
m (κ) :=

m∑
`=0

ω1
` (κ)ω2

m−`(κ)

is the convolution of the discrete sequences {ω1
m(κ)} and {ω2

m(κ)} and at the same time
the sequence of weights associated to the symbol s 7→ F1(s)F2(s).
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4.2 The ζ transform

Let X be Banach space and h := (hn)∞n=0 be any sequence of elements of X. Consider
the formal series

H(ζ) :=
∞∑
m=0

hm ζ
m.

Since it is a power series in the variable ζ, when it converges, it does so in an open ball
in the complex plane centered at the origin and possibly in some points of its boundary.
In that case, the elements of the sequence can be recovered by noticing that

hm =
1

m!
H(m)(0),

since H is analytic in a neighborhood of the origin. In any case, we do not demand that
this series converges. Constant series

H(ζ) ≡ h0

correspond to almost trivial sequences (h0, 0, . . . , 0, . . .).
If the convolution of two sequences h1 and h2 is well-defined,

(h1 ∗ h2)n =
n∑

m=0

h1
mh

2
n−m,

then the ζ-series associated to this convolution is simply the Cauchy product of the formal
series H1(ζ) and H2(ζ). The concern for the correct definition of the convolution product
is not referred to convergence issues but to the fact that the products h1

mh
2
m−n make sense,

which is the case when:

(a) h1 takes values in B(X, Y ) and h2 in B(Z,X) or,

(b) h1 takes values in B(X, Y ) and h2 takes values in X.

Let (an) ⊂ B(X, Y ) and let a0 be invertible. Consider the sequence defined by the
recurrence

ainv
0 = a−1

0

ainv
n = −

(
n−1∑
m=0

ainv
m an−m

)
a−1

0

and let

A(ζ) =
∞∑
n=0

anζ
n, A−1(ζ) =

∞∑
n=0

ainv
n ζn.

Then
A−1(ζ)A(ζ) = IX , A(ζ)A−1(ζ) = IY

where IX and IY are the respective identity operators in X and Y and, at the same time,
the corresponding constant series.

In case A(ζ) is convergent –that is, when it defines an analytic function B(0, r) →
B(X, Y )–, then if A(0) = a0 is invertible, A(ζ)−1 exists for ζ sufficiently small and ζ 7→
A(ζ)−1 is again analytic. The corresponding Taylor series is the same as the formal
inversion of the series.
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4.3 Convolution equations

Assume now that we are interested in solving a convolution equation

f ∗ g = h,

where f and h are known: f is the operator part of the equation, h is the right-hand side.
If

F

(
p(ζ)

κ

)
=

∞∑
m=0

ωm(κ)ζm

then we can try to solve the following triangular scheme of equations

n∑
m=0

ωm(κ)gn−m = h(tn), n ≥ 0.

Obviously this is equivalent to solving

ω0(κ)gn = h(tn)−
n∑

m=1

ωm(κ)gn−m, (4.6)

which is possible if ω0(κ) is invertible. In the case

f : [0,∞)→ B(X, Y ), h : [0,∞)→ Y

the method provides a sequence of elements of X, {gn}, that we expect to approximate
the sequence {g(tn)} if this one exists. All the steps in (4.6) involve solving an operator
equation with data in Y and solution in X, always with the same operator: ω0(κ).

Proposition 4.3.1. Assume that F−1(s) exists for all s ∈ C+ and that

F

(
p(ζ)

κ

)
=

∞∑
m=0

ωm(κ)ζm, F−1

(
p(ζ)

κ

)
=

∞∑
m=0

ωinv
m (κ)ζm.

Then the sequence defined by (4.6) coincides with the sequence

gn :=
n∑

m=0

ωinv
m (κ)h(tn−m).

Proof. Since F( 1
κ
p(0)) = ω0(κ) is invertible if Re p(0) > 0, then (4.6) defines a sequence

gn. On the other hand

F

(
p(ζ)

κ

)
F−1

(
p(ζ)

κ

)
= I, |ζ| ≈ 0.

This implies that

n∑
m=0

ωm(κ)

[ n−m∑
`=0

ωinv
` (κ)h(tn−m−`)

]
= h(tn), ∀n.

By uniqueness of the equations (4.6), this sequence has to be {gn}.
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Assume that p(ζ) is a rational function

p(ζ) =
α(ζ)

β(ζ)
=
α0 + α1ζ + . . .+ αNζ

N

β0 + β1ζ + . . .+ βNζN
, (4.7)

with
α0 β0 6= 0.

We consider an implicit N−step method to discretize

y′ = f(t, y)

defined by the implicit equations

α0yn + α1yn−1 + . . .+ αNyn−N (4.8)

= κ

(
β0f(tn, yn) + β1f(tn−1, yn−1) + . . .+ βNf(tn−N , yn−N)

)
, n ≥ 0.

Then we can prove two results:

Proposition 4.3.2. If we derive the CQ-method by approximating

y(tn; s) =

∫ tn

0

es τg(tn − τ)dτ

with the multistep method (4.8) for the equation[
y′ = s y + g, t ≥ 0,

y(0) = 0,

and zero starting values
y−1 = . . . = y−N = 0,

then we obtain the CQ method associated to p.

Proof. Specialized to the equation y′ = s y + g, the multistep method is

α0yn + α1yn−1 + . . .+ αNyn−N

= κ s
[
β0yn + β1yn−1 + . . .+ βNyn−N

]
+ κ
(
β0gn + β1gn−1 + . . .+ βNgn−N

)
.

The sequence is well defined if and only if α0 − κ s β0 6= 0, that is,

1
κ
p(0) 6= s.

Taking as starting values y = −1 = . . . = y−N = 0 and using g−1 = . . . = g−N := 0, this
corresponds to

α(ζ)Y(ζ) = κ s β(ζ)Y(ζ) + κG(ζ).

The formal series α(ζ)− κ s β(ζ) is invertible and

Y(ζ) = Y(ζ; s) =
(
α(ζ)− κsβ(ζ)

)−1
κβ(ζ)G(ζ) =

(
1
κ
p(ζ)− s

)−1
G(ζ).
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Notice that p(ζ) is holomorphic near the origin and that 1
κ
p(ζ) − s is holomorphic and

non-vanishing near ζ = 0.
For ζ small

1

2πı

∫ σ+ı∞

σ−ı∞

(
1
κ
p(ζ)− s

)−1
F(s)ds = F

(
1
κ
p(ζ)

)
and up to convergence questions, that is essentially all.

Proposition 4.3.3. If we apply the CQ method based on

p(ζ) =
α(ζ)

β(ζ)
=
α0 + α1ζ + . . .+ αNζ

N

β0 + β1ζ + . . .+ βNζN
,

to an equation
(δ0 ⊗ A) ∗ g + (δ′0 ⊗B) ∗ g = h,

(where A and B are bounded operators) we obtain the same result as when applying the
multisptep method to the implicit differential equation

Ag + d
dt

(Bg) = h.

4.4 A more abstract point of view

The convolution quadrature is actually a convolution at the continuous level. Let start
from the beginning. We need p defined in a neighborhood of the origin such that Re p(ζ)
for |ζ| small enough.

Assume that F : C+ → B(X, Y ) is analytic. Then, the sequence of weights {ωm(κ)}
is well defined with the Taylor expansion

F
(p(ζ)

κ

)
=

∞∑
m=0

ωm(κ)ζm. (4.9)

We can then define the B(X, Y )-valued causal (possibly non tempered) distribution:

fκ :=
∞∑
m=0

δtm ⊗ ωm(κ). (4.10)

In this case, it is possible to apply the convolution of fκ with any causal X-valued distri-
bution g. This is how:

fκ ∗ g =
∞∑
m=0

ωm(κ)g( · − tm).

If g : R→ X is a continuous casual function (as such, g(0) = 0), then

(fκ ∗ g)(t) =
∞∑
m=0

ωm(κ)g(t− tm) =

bt/κc∑
m=0

ωm(κ)g(t− tm)
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is a causal Y -valued continuous function. We can then evaluate this convolution at the
mesh points

(fκ ∗ g)(tn) =
n∑

m=0

ωm(κ)g(tn−m).

If we take the Laplace transform (assuming we can do it) in (4.10) we obtain

Fκ(s) =
∞∑
m=0

e−stmωm(κ) =
∞∑
m=0

(e−sκ)mωm(κ)

= F
(p(e−sκ)

κ

)
. (by (4.9))

We will see how, under some hypotheses on p(ζ), the approximation in the Laplace domain

F(s) 7−→ F
(p(e−sκ)

κ

)
defines a transformation of symbols of the classes we studied in Chapter 3. This will justify
that fκ is a causal tempered distribution (and more) and that convolution quadrature
can be viewed as discrete convolution (with sequences and ζ-transforms) or as continuous
convolution (with distributions and Laplace transforms).

4.5 Symbol approximation by CQ

The building function. We need p : U → C holomorphic in U , where {ζ ∈ C : |ζ| ≤
1} ⊂ U . Note that this precludes the existence of any kind of poles of p in the closed unit
ball. Two main assumptions are made:

(a) p : B(0, 1)→ C+.

(b) There exist q ≥ 1, C0 > 0 and κ0 > 0 such that∣∣∣∣p(e−κ)κ
− 1

∣∣∣∣ ≤ C0κ
q ∀κ ≤ κ0.

In particular p(1) = 0 and p′(1) = −1.

Unfortunately (because q is going to be the optimal order of the method), the previous
hypotheses impose that q ≤ 2. (In the numerical ODE literature, this result is known as
Dahlquist’s Second Barrier.) Only three properties of this function will be used. They
are presented in the following result. We will keep the notation of Chapters 2 and 3:

σ := Re s σ := min{1, σ}.

The proof of this result uses standard techniques of complex analysis. It is included in
Section 4.7.
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Proposition 4.5.1. If p satisfies the above properties and κmax > 0, there exist three
positive constants C1, C2, C3 such that for all s ∈ C+

|p(e−s)| ≤ C1|s| |p(e−s)− s| ≤ C2|s|q+1 (4.11)

and

C3σ ≤ Re

(
p(e−sκ)

κ

)
∀κ ≤ κmax. (4.12)

Only the constant C3 depends on κmax.

The next result shows that the discrete convolution operator fκ is actually a convolu-
tion operator. Given a symbol F, we can define the approximate symbol

Fκ(s) := F

(
p(e−sκ)

κ

)
.

Analysis of this new symbol and its approximation properties to the original symbol F(s)
is sketched next. Note that Fκ(s + ıκ−1) = Fκ(s). This periodicity property reflects the
fact that fκ is discrete.

Proposition 4.5.2. For F ∈ A(µ,X) with µ ≥ 0,

‖Fκ(s)‖ ≤ Cµ
1CF(C3σ)|s|µ.

Therefore Fκ is a symbol of order µ with a bounding function independent of κ and fκ ∈
TD(X). Consequently

‖F(s)− Fκ(s)‖ ≤ (1 + Cµ
1 )CF(C3 σ)|σ|µ ∀s ∈ C+. (4.13)

Proof. Applying the definition, it follows that

‖Fκ(s)‖ ≤ CF

(
Re

(
p(e−sκ)

κ

)
︸ ︷︷ ︸

≥C3σ

)∣∣∣∣p(e−sκ)κ

∣∣∣∣µ (by (4.12))

≤ CF(C3σ)

∣∣∣∣p(e−sκ)sκ

∣∣∣∣µ |s|µ CF is non-increasing

≤ CF(C3σ)Cµ
1 |s|µ. (by (4.11))

The final bound follows from simple arguments:

|s|−µ‖F(s)− Fκ(s)‖ ≤ CF(σ) + Cµ
1CF(C3σ)

≤ CF(σ) + Cµ
1CF(C3σ)

≤ (1 + Cµ
1 )CF(min{1, C3}σ).

Proposition 4.5.3. If F ∈ A(µ,X), then F′ ∈ A(µ, 0). In the case µ ≥ 0 we can bound

‖F′(s)‖ ≤
(

3
2

)µ 2
σ
CF(σ

2
)|s|µ.
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Proof. Let Ξ(s) := {z ∈ C : |z − s| ≤ σ/2} with positive orientation. We can then write

F′(s) =
1

2πı

∫
Ξ(s)

(z − s)−2F(z)dz,

and bound using that |Ξ(s)| = πσ, Re z ≥ σ/2 and |z| ≤ 3
2
|s| for all z ∈ Ξ(s).

Proposition 4.5.4. Let F ∈ A(µ,X) with µ ≥ 0. Then

‖F(s)− Fκ(s)‖ ≤ ADF(σ)σ−1 κq|s|µ+q+1 ∀s ∈ C+

where
DF(σ) := CF(1

2
C3 σ)

The constant A depends of p(ζ) (through the quantities of Proposition 4.5.1) and on µ.

Proof. Recall that

F(s)− Fκ(s) = F(s)− F
(
p(e−sκ)

κ

)
and let Ξκ(s) := {αs+ (1− α)p(e

−sκ)
κ

: 0 ≤ α ≤ 1}, be the straight line path than joins s

and p(e−sκ)
κ

. For z ∈ Ξκ(s), we can bound

Re z ≥ min{σ,Re

(
p(s−sκ)

κ

)
} ≥ min{σ,C3σ} ≥ min{1, C3}σ = C3σ (4.14)

and
|z| ≤ max{|s|,

∣∣∣p(e−sκ)
κ

∣∣∣} ≤ |s|max{1, C1}. (4.15)

Using (4.14) and (4.15) in Proposition 4.5.3, it follows that

‖F′(z)‖ ≤
(

3
2

)µ 2

Re z
CF

(
1
2
Re z

)
|z|µ

≤ 2
C3

(
3
2

max{1, C1}
)µ 1

σ
CF

(
1
2
C3σ

)
|s|µ ∀z ∈ Ξκ(s)

this, the fact that ∣∣∣∣s− p(e−sκ)

κ

∣∣∣∣ = κ−1
∣∣sκ− p(e−sκ)∣∣ ≤ C2κ

q|s|q+1,

and

‖F(s)− F
(
p(e−sκ)

κ

)
‖ ≤
√

2

∣∣∣∣s− p(e−sκ)

κ

∣∣∣∣ max
z∈Ξκ(s)

‖F′(z)‖

(see Exercises) prove the result.

Proposition 4.5.5 (L1 estimates). Let r > 0 and F ∈ A(µ,X) with µ ≥ 0. Then

‖( · )−1−µ−r(F− Fκ)‖L1(σ+ıR,X) ≤ C DF(σ)σ−1 max{σ−r, σq−r}E(κ),

where
E(κ) := κr

q
q+1 + δr,q+1κ

q| log κ|+ κq

and the constant C depends on p(ζ), µ and r.
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Proof. We can gather the approximation properties proved in Propositions 4.5.2 and 4.5.4
in the inequality

‖s−1−µ−r(F(s)− Fκ(s))‖ ≤ BDF(σ)

{
|s|−r−1,
σ−1|s|q−rκq, (4.16)

where the constant B depends on µ and on p(ζ). If s = σ + ıη we can always bound

1√
2
σ(1 + |η|) ≤ |s| ≤ max{1, σ}(1 + |η|).

Therefore

|s|−r−1 ≤ 2
r+1

2 σ−r−1(1 + |η|)−r−1 ,

|s|q−r ≤ 2
r−q

2 σq−r(1 + |η|)q−r, q − r ≤ 0,

|s|q−r ≤ max{1, σ}q−r(1 + |η|)q−r q − r > 0.

We can collect the last two inequalities in the following condensed form and :

|s|q−r ≤ 2
r−q

2 max{σ−r, σq−r} (1 + |η|)q−r,
|s|−r−1 ≤ 2

r+1
2 σ−1 max{σ−r, σq−r} (1 + |η|)−r−1.

Bringing these inequalities to (4.16) and collecting constants again, we can write

‖s−1−µ−r(F(s)− Fκ(s))‖ ≤ C DF(σ)σ−1 max{σ−r, σq−r}
×min{(1 + |η|)−r−1, κq(1 + |η|)q−r},

with C depending on B (and thus on p and µ) and on the index r. Since for r, q > 0∫ ∞
−∞

min{(1 + |η|)−r−1, κq(1 + |η|)q−r}dη ≤ C × E(κ),

the result follows readily.

Proposition 4.5.6 (Pointwise estimates). Let F ∈ A(µ,X) with µ ≥ 0.

(a) If r, ε satisfy
0 ≤ ε ≤ r − (q + 1),

then
‖F(s)− Fκ(s)‖ ≤ C|s|µ+r−εDF(σ)σ−1σq+1−r+ε κq ∀s ∈ C+.

(b) If r, ε satisfy
0 ≤ ε ≤ r ≤ q + 1,

then
‖F(s)− Fκ(s)‖ ≤ C|s|µ+r−εDF(σ)σ−1 κ(r−ε) q

q+1 ∀s ∈ C+.

The constants C depend of µ, p and r.
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Proof. Using Propositions 4.5.2 and 4.5.4 (see also (4.16)) we can easily bound

‖F(s)− Fκ(s)‖ ≤ B |s|µDF(σ) min{1, |s|q+1κqσ−1}
= B|s|µDF(σ)σ−1︸ ︷︷ ︸

=Ξ

min{1, σ, |s|q+1κq}

With the hypotheses (a) for the parameters, we continue the bounds as

‖F(s)− Fκ(s)‖ ≤ Ξ|s|q+1κq ≤ Ξ|s|r−εσq+1−(r−ε)κq,

due to the fact that q + 1− r + ε ≤ 0.
In the case of (b), we have that (r − ε)/(q + 1) ≤ 1, and therefore

min{1, α} ≤ α
r−ε
q+1 ∀α > 0,

We proceed as before to bound

‖F(s)− Fκ(s)‖ ≤ Ξ min{1, |s|q+1κq} ≤ Ξ|s|r−εκ(r−ε) q
q+1 ,

which finishes the proof.

4.6 Convergence of CQ

Proposition 4.6.1 (Uniform convergence with L1 regularity). Let F ∈ A(µ,B(X, Y ))
with µ ≥ 0 and define DF(σ) := CF(1

2
C3 σ). Let g be a causal X-valued function such

that
g ∈ Ck−1(R, X) g(k) ∈ L1(R, X), k > µ+ 1.

Then

‖(f ∗ g)(t)− (fκ ∗ g)(t)‖ ≤ D × error(κ)h(t)

∫ t

0

‖g(k)(τ)‖dτ,

where D depends only on µ, k and p,

error(κ) := κ(k−µ−1) q
q+1 + δk,µ+q+2κ

q| log κ|+ κq

and

h(t) :=


tk−µDF(t−1) t ≥ 1,
DF(1)tk−µ−1−q t ≤ 1 and k ≥ µ+ 1 + q,
DF(1), t ≤ 1 and µ+ 1 < k < µ+ 1 + q.

Optimal convergence (order q) is obtained for k > µ+ q + 2.

Proof. The proof uses techniques that we have already met in the analysis of convolution
operators. (See Section 3.2 and especially Proposition 3.2.2.) The Laplace transform of
the error f ∗ g − fκ ∗ g is

(F− Fκ) G ∈ A(µ− k, Y ) µ− k < −1.
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(To see this, use Proposition 4.5.2 for the term F − Fκ and recall the proof that G ∈
A(−k,X) given in Proposition 3.2.2.) Since µ−k < −1 we can apply the strong inversion
formula for the Laplace transform (see Section 3.1 and in particular (3.2)), so that

‖(f ∗ g)(t)− (fκ ∗ g)(t)‖ ≤ eσt

2π
‖(F− Fκ)G‖L1(σ+ıR,Y )

≤ eσt

2π
‖( · )−k(F− Fκ)‖L1(σ+ıR,L(X,Y )) sup

Re s=σ
‖skG(s)‖.

Using the integral formula for the Laplace transform of skG(s), it follows that

sup
Re s=σ

‖skG(s)‖ ≤
∫ ∞

0

e−στ‖g(k)(τ)‖dτ ≤
∫ ∞

0

‖g(k)(τ)‖dτ.

Using Proposition 4.5.5 with r = k − 1 − µ and noticing that error(κ) = E(κ) for those
parameters, we arrive at an error bound, proportional to

eσtDF(σ)σ−1 max{σ−k+1+µ, σq−k+1+µ}error(κ)

∫ ∞
0

‖g(k)(τ)‖dτ.

The dependence on t of the error constants is obtained by taking σ = t−1 or σ = 1 (this
last value when t ≥ 1 and k − µ− 1− q < 0).

To change the integration interval for ‖g(k)‖ from (0,∞) to (0, t) we can use the
causality argument of Proposition 3.2.2. (See Exercises.)

Remark. Note that the error term in Proposition 4.6.1 can be split into three different
cases:

(a) If µ+ 1 < k < µ+ q + 2, then

error(κ) = κα
q
q+1 α := k − µ− 1 ∈ (0, q + 1).

(b) If k = µ+q+2 (which can only happen if µ is an integer), then error(κ) = κq| log κ|.

(c) Finally, for k > µ+ q + 2, the error is of optimal order κq.

Proposition 4.6.2 (Uniform estimates with L2 regularity). Let F ∈ A(µ,B(X, Y )) with
µ ≥ 0 and define DF(σ) := CF(1

2
C3 σ). Let g be a causal X-valued function such that

g ∈ Ck−1(R, X) g(k) ∈ L2(R, X).

(a) If k > µ+ q + 3
2
, then

‖(f ∗ g)(t)− (fκ ∗ g)(t)‖ ≤ κq h(t)
(∫ t

0

‖g(k)(τ)‖2dτ
)1/2

,

where

h1(t) = C
2α/4√
α
DF(t−1) max{1, t}tα α = k − µ− q − 3

2
.
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(b) If µ+ q + 3
2
≥ k > µ+ 1

2
, then

‖(f ∗ g)(t)− (fκ ∗ g)(t)‖ ≤ κβ
q
q+1 | log κ|1/2 h(t)

(∫ t

0

‖g(k)(τ)‖2dτ
)1/2

,

where

h2(t) = C
2β/4√
β
DF(t−1) max{1, tβ+1} β = k − µ− 1

2
∈ (0, q + 1].

The constants C depend on k, µ and p.

Proof. Let eκ := f ∗ g − fκ ∗ g and assume that g is smooth causal and compactly
supported. Using the inversion formula for the Laplace transform (using the inversion
contour Re s = σ), we can bound

‖eκ(t)‖ ≤
eσt

2π

(∫ ∞
−∞

dη

|σ + ıη| 12 +ε

)1/2

sup
Re s=σ

|s|−k+ 1
2

+ε‖F(s)− Fκ(s)‖

×
(∫ ∞
−∞
‖(σ + ıη)kG(σ + ıη)‖2dη

)1/2

≤ eσt

2π

(2ε+
1
2

εσ2ε

)1/2

sup
Re s=σ

|s|−k+ 1
2

+ε‖F(s)− Fκ(s)‖
( 1

2π

∫ ∞
0

‖g(k)(τ)‖2dτ
)1/2

,

where in the last inequality we have used Plancherel’s identity (see Section 3.7) and, for
obvious reasons, we need to take ε > 0.

In case (a), we apply Proposition 4.5.6(a) with

r = k − µ− 1
2
> q + 1, ε = 1

2
(r − (q + 1)) = 1

2
α > 0

so that
µ+ r − ε = k − 1

2
− ε and q + 1− r + ε = −1

2
α.

Then
2
ε
2

+ 1
4

σε
√
ε

sup
Re s=σ

|s|−k+ 1
2

+ε‖F(s)− Fκ(s)‖ ≤
23/4

√
α

2
1
2

(α+1)

σα
DF(σ)σ−1κq.

The result follows now from taking σ = 1/t, simplifying, using a density argument and
causality to generalize for any g and restrict the integral in the right hand side to (0, t).

Part (b) is left to the reader as an exercise.

4.7 Appendix: A-acceptable functions

Let us recall the hypotheses on p. We assume that there is a open set U such that
{ζ ∈ C : |ζ| ≤ 1} ⊂ U and that p : U → C is holomorphic and satisfies

(a) p : B(0, 1)→ C+.
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(b) There exist q ≥ 1, C0 > 0 and κ0 > 0 such that∣∣∣∣p(e−κ)κ
− 1

∣∣∣∣ ≤ C0κ
q ∀κ ≤ κ0.

In particular p(1) = 0 and p′(1) = −1.

Note that the functions s 7→ p(e−s) and s 7→ sκ = κ−1p(e−κs) are holomorphic C+ → C+.

Proposition 4.7.1. There exists C1 > 0 such that

|p(e−s)| ≤ C1 |s| ∀s ∈ C+.

Proof. It is not complicated to prove that∣∣∣∣e−s − 1

s

∣∣∣∣ ≤ 2 ∀s ∈ C+. (4.17)

Since the function p(ζ)(1− ζ)−1 is holomorphic in U , we can bound∣∣∣∣p(e−s)s

∣∣∣∣ ≤ 2

∣∣∣∣ p(e−s)e−s − 1

∣∣∣∣ ≤ 2 max
|ζ|≤1

∣∣∣∣ p(ζ)

ζ − 1

∣∣∣∣ ,
which completes the proof.

Proposition 4.7.2. There exists C2 > 0 such that

|p(e−s)− s| ≤ C2|s|q+1 ∀s ∈ C+.

Proof. The hypotheses of p imply that the function

h(s) :=
p(e−s)− s

sq+1

is holomorphic in a neighborhood of the origin and therefore, there exists ρ > 0 and C̃ > 0
such that such that ∣∣∣∣p(e−s)− ssq+1

∣∣∣∣ ≤ C̃, when |s| ≤ ρ.

For s ∈ C+ such that |s| ≥ ρ, we can bound using Proposition 4.7.1

|p(e−s)− s| ≤ (C1 + 1)|s| ≤ (C1 + 1)ρ−q|s|q+1.

This finishes the proof.

Proposition 4.7.3. There exists C3 > 0 such that

Re p(e−s) ≥ C3σ ∀s ∈ C+.
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Proof. By the Cauchy Representation Formula

p(z) =
1

2πı

∫
|ζ|=1

p(ζ)

ζ − z
dζ =

1

2π

∫ 2π

0

p(eıθ)

eıθ − z
eıθdθ ∀z ∈ B(0; 1)

and therefore

Re p(reıφ) =
1

2π

∫ 2π

0

Re p(eıθ)
1− r2

1− 2r cos(φ− θ) + r2
dθ ∀r < 1, ∀φ.

(This is just the well-known Poisson formula.) We now use the fact that Rep(eıθ) ≥ 0
(this follows from the hypotheses on p) and

1− r2

1− 2r cos(φ− θ) + r2
≥ 1− r2

1 + 2r + r2
=

1− r
1 + r

to bound

Re p(r eıφ) ≥ 1− r
1 + r

1

2π

∫ 2π

0

Re p(eıθ)dθ︸ ︷︷ ︸
=:Cp>0

.

Applying this to the point ζ = e−s = e−σe−ıω for s ∈ C+, it follows that

Re p(e−s) ≥ Cp
1− e−σ

1 + e−σ
.

Finally
1− e−σ

1 + e−σ
= tanh(σ/2) ≥ tanh(1/2) min{1, σ} = tanh(1/2)σ,

which completes the proof.

Proposition 4.7.4. For all κ ≤ κmax

Re
(p(e−κ s)

κ

)
≥ C3

max{1, κmax}
σ ∀s ∈ C+.

Proof. We just apply Proposition 4.7.4 to bound

Re p(e−κ s) ≥ C3 min{1, κσ} = C3κmin{κ−1, σ}
≥ C3κmin{κ−1, 1}min{1, σ} ≥ C3κmin{κ−1

max, 1}σ.

This finishes the proof.

Proposition 4.7.5. In the hypotheses above, any zero of p in the boundary of the unit
disk is simple.

Proof. See [10, Chapter 5, Theorem 1.5]. The result is obviously related to the fact that
the unit ball is mapped to C+. A double zero would then make part of the unit disk to
be mapped outside C+.
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4.8 Exercises

1. (Section 4.3) Prove Proposition 4.3.3.

2. (Section 4.5) The CQ method can also be described by means of a discrete differ-
entiation operator

sκ := κ−1p(e−sκ)

that is used to define discrete versions of all symbols Fκ(s) := F(sκ). Show that
Proposition 4.5.1 can be written in the alternative form

|sκ| ≤ C1|s|, |sκ − s| ≤ C2κ
q|s|q+1, Re sκ ≥ C3σ ∀s ∈ C+.

3. (Section 4.5) Consider the discrete differentiation operator ∂κu := L−1{sκU(s)},
where sκ := κ−1p(e−sκ). Use the previous exercise and Proposition 3.2.2 to provide
direct bounds for

‖(∂κu)(t)‖ and ‖u′(t)− (∂κu)(t)‖.

4. (Section 4.5) Prove that if F is holomorphic in a convex set, then for all s1, s2 in
that set

‖F(s1)− F(s2)‖ ≤
√

2|s1 − s2| max
z∈[s1,s2]

‖F′(z)‖,

where [s1, s2] = {αs1 +(1−α)s2 : α ∈ [0, 1]}. (Hint. Use the Mean Value Theorem
for bivariate functions and the Cauchy-Riemann equations.)

5. (Section 4.6) Show that if f is a causal distribution and for sufficiently smooth
causal g

‖(f ∗ g)(t)‖ ≤ C(t)

∫ ∞
0

‖g(k)(τ)‖dτ,

then

‖(f ∗ g)(t)‖ ≤ C(t)

∫ t

0

‖g(k)(τ)‖dτ.

(Hint. You can use the strategy of the proof of Proposition 3.2.2. The idea can be
simplified to showing the result for k = 0 and then extending it for general k using
differentiation and antidifferentiation operators.)

6. (Section 4.6) Prove part (b) of Proposition 4.6.1. (Hint. Use the same inequalities
that are used to prove part (a). Assume that log κ < −1 and take

ε := − r

log κ
< r, r = k − µ− 1

2
= β

in Proposition 4.5.6. Note also that t−r/ log κ ≤ max{1, tr}.)

7. (Section 4.7) Show that in the hypotheses of Section 4.7, the function

h(s) :=
p(e−s)− s

sq+1

is holomorphic in a neighborhood of zero.
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Chapter 5

Convolution Quadrature and the
single layer potential

5.1 Back to scattering problems

Let us then go back to the problem of scattering by a sound soft obstacle, using a single
layer potential. Data is a causal function g with values in H1/2(Γ). An integral equation
is solved to find a density

V ∗ λ = g ⇐⇒ λ = V−1 ∗ g

and then a potential is computed using λ:

u = S ∗ λ = S ∗ V−1 ∗ g.

Recall that (Proposition 2.6.1)

‖V−1(s)‖ ≤ C
|s|2

σσ

and (Section 3.3)

‖S(s)V−1(s)‖H1/2(Γ)→H1(Rd\Γ) ≤ C
|s|3/2

σσ3/2
.

Because we are first solving a convolution equation, we do not have access to the entire
function λκ := (V−1)κ ∗g but only to its values at the fixed time steps tn = κn. The error
bound (Proposition 4.6.1) is applied to V−1 and to S V−1 separately. For the BDF2-based
method (q = 2) the errors

‖λ(tn)− λκ(tn)‖−1/2,Γ

are bounded by a product of three quantities:

errorλ(κ)× behaviorλ(tn)×
∫ tn

0

‖g(k)(τ)‖dτ.

Let us tabulate the results for the possible values of k:
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k errorλ(κ) behaviorλ(t) for t ≥ 1 behaviorλ(t) for t ≤ 1

4 κ2/3 t4 1

5 κ4/3 t5 1

6 κ2| log κ| t6 t

7 κ2 t7 t2

The errors
‖u(tn)− uκ(tn)‖1,Ω+

are bounded again by a triple product

erroru(κ)× behavioru(tn)×
∫ t

0

‖g(k)(τ)‖dτ,

with the following table:

k erroru(κ) behavioru(t) for t ≥ 1 behaviorλ(t) for t ≤ 1

3 κ1/3 t4 1

4 κ t5 1

5 κ5/3 t6 t1/2

6 κ2 t7 t3/2

5.2 Full discretization with CQ-BEM

The method. A fully discrete method for the problem

V ∗ λ = g u = S ∗ λ

can be devised by first discretizing in space with a Galerkin scheme and then using
convolution quadrature for the resulting system. In order to do this, we start by choosing
a finite dimensional space Xh ⊂ H−1/2(Γ) (in practice, the space is always taken as
Xh ⊂ L∞(Γ)). In the time domain, we look for λh ∈ TD(Xh) (where Xh is endowed with
the H−1/2(Γ)-norm) such that

〈µh,V ∗ λh〉Γ = 〈µh, g〉Γ ∀µh ∈ Xh. (5.1)

It is not difficult to see that this is again a convolution equation: to do that, we take the
(steady state) operator Rh : H1/2(Γ)→ X ′h

H1/2(Γ) 3 g 7−→ Rhg := 〈 · , g〉Γ : Xh → R

and note that the equation (5.1) is equivalent to

(δ0 ⊗Rh) ∗ V ∗ λh = Rhg.
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The operator to which convolution quadrature is applied is an operator Xh → X ′h

λh 7→ (δ0 ⊗Rh) ∗ V ∗ λh = Rh(V ∗ λh).

In a postprocessing step, CQ is used again for the discretization of the potential

uh := S ∗ λh. (5.2)

A look at the equations. If {Φ1, . . . ,ΦN} is a basis of Xh, then we can write

λh =
N∑
j=1

λj ⊗ Φj, λj ∈ TD(R)

and, assuming the time distributions λj are functions, write the semidiscrete system (4.17)
in the following practical form:

N∑
j=1

∫
Γ

∫
Γ

Φi(x)Φj(y)

4π|x− y|
λj(t− c−1|x− y|) dΓ(x)dΓ(y) =

∫
Γ

Φi(x) g(x, t)dΓ(x)

i = 1, . . . , N, t > 0.

The Laplace domain form of the operator in this system corresponds to the s-dependent
matrix

Vij(s) :=

∫
Γ

∫
Γ

e−s|x−y|

4π|x− y|
Φi(x)Φj(y)dΓ(x)dΓ(y),

which is an Xh-based Galerkin discretization of the integral operator V(s). The convolu-
tion quadrature method then needs an expansion

Vij

(p(ζ)
κ

)
=

∞∑
m=0

Vm
ij (κ)ζm.

Time-stepping is carried out by solving systems

n∑
m=0

N∑
j=1

Vm
ijλ

n−m
j = gni i = 1, . . . , N, n ≥ 0,

where

gni :=

∫
Γ

Φi(x)g(x, tn)dΓ(x) i = 1, . . . , N, n ≥ 0.

The unknowns allow us to reconstruct functions

Xh 3 λhκ(tn) :=
N∑
j=1

λnj Φj ≈ λh(tn),

for which only the values at discrete times are computed. Every time step requires the
solution of a N ×N system

N∑
j=1

V0
ij(κ)λnj = gni −

n∑
m=1

N∑
j=1

Vm
ij (κ)λn−mj , i = 1, . . . , N. (5.3)
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The matrix is

V0
ij(κ) =

∫
Γ

∫
Γ

e−
p(0)
κ
|x−y|

4π|x− y|
Φi(x)Φj(y)dΓ(x)dΓ(y),

which is, once again, the result of using an Xh-based Galerkin discretization to the oper-
ator V(p(0)

κ
). Actually, if we apply directly a convolution quadrature method to V ∗λ = g,

we end up with a sequence of integral equations

V0(κ)λn = g(tn)−
n∑

m=1

Vm(κ)λn−m, (5.4)

where

V
(p(ζ)

κ

)
=

∞∑
m=0

Vm(κ)ζm

is the sequence of weights associated to the CQ scheme. Using an Xh-based Galerkin
discretization to each of the integral equations (5.4) is equivalent to the method we had
just derived, that is, for this kind of problems, Galerkin semidiscretization is space and
convolution quadrature in time commute.

Final words. The sequence of problems (5.3) (and the time-semidiscrete sequence (5.4))
present the serious disadvantage of having an infinite tail. In other words, the passage
through the Laplace domain introduces a regularization of the wave equation that elimi-
nates the Huygens’ principle that so clearly appears in the time domain retarded operators
and potentials. Some estimates exist concerning the size of the operators Vm(κ) for large
enough m and on the effect of doing away with them in the time-stepping process. They
provide theoretical support for a trick that can be safely played for in practice. Practical
evaluation of the discrete kernels Vn

ij and the discrete convolutions where they appear can
be accomplished with a battery of techniques based on the FFT and recursion. Details
on how this is done can be found in [6].

5.3 The Galerkin (semidiscrete) solver

In this section we study the semidiscrete-in-space problem (5.1)–(5.2). We will study the
operator that associates g 7→ (λh, uh), by referring to its properties in the Laplace domain.
We thus look at the problem of finding

λh ∈ Xh such that 〈µh,V(s)λh〉Γ = 〈µh, g〉Γ ∀µh ∈ Xh. (5.5)

and the constructing the potential

uh = S(s)λh. (5.6)

We will then write

λh = Gh
λ(s)g uh = Gh

u(s)g = S(s)Gh
λ(s)g.
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What we mean with the expression ‘for all h’. We want the analysis to be inde-
pendent (as much as possible) of the particular choice of the discrete space Xh. We will
use the convention of referring to a property being satisfied for all h to refer to the fact
that the bound is completely independent of the choice of Xh. As we will see, all estimates
will only use the fact that Xh is a closed subspace of H−1/2(Γ), but we will never use that
it is finite dimensional. The results will therefore hold for Xh = H−1/2(Γ), in which case
Gh
λ(s) = V−1(s).

Direct estimates. Using the fact that

Re
(
eıArg s〈λh,V(s)λh〉Γ ≥ CΓ

σσ

|s|2
‖λh‖2

−1/2,Γ ∀λh ∈ Xh, ∀s ∈ C+

(Proposition 2.6.1) we can bound

‖Gh
λ(s)‖H1/2(Γ)→H−1/2(Γ)‖ ≤ C−1

Γ

|s|2

σσ
∀s ∈ C+ ∀h. (5.7)

Using the the estimate for the norm of S(s) (Proposition 2.6.2) we can bound

‖Gh
u(s)‖H1/2(Γ)→H1(Rd) ≤ ‖S(s)‖H−1/2(Γ)→H1(Rd)‖Gh

λ(s)‖H1/2(Γ)→H−1/2(Γ) ≤ CΓ
|s|3

σ2σ3
. (5.8)

If we compare this result with the one for the continuous operator (Xh = H−1/2(Γ)) given
in Section 3.3, we can easily notice that the result is not optimal. We will next give a
detailed proof of how to obtain a better estimate (that reproduces the one in Section 3.3)
by using a very similar approach to the one used in the continuous case. We emphasize
the importance of lowering the powers of |s| and σ−1 in the bounds, both for mapping
properties (Proposition 3.2.2) and for smoothness requirements to obtain convergence of
the Convolution Quadrature method.

Analysis based on exotic transmission problems. We first need to introduce some
notation. The polar set or annihilator of the set Xh is

X◦h := {ξ ∈ H1/2(Γ) : 〈λh, ξ〉Γ = 0 ∀λh ∈ Xh}.

A first observation is the fact that equation (5.5) is equivalent to

λh ∈ Xh such that V(s)λh − g ∈ X◦h. (5.9)

The second observation is the equivalence

λ ∈ Xh ⇐⇒ 〈λ, ξ〉Γ = 0 ∀ξ ∈ X◦h. (5.10)

These two observations trigger the forthcoming analysis. Following [12], we will divide
the process in four steps.
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Proposition 5.3.1 (Step #1: transmission problem). Let g ∈ H1/2(Γ). Then uh =
Gh
u(s)g if and only if uh is the solution of the following problem:

uh ∈ H1(Rd), (5.11a)

∆uh − s2uh = 0 in Rd \ Γ, (5.11b)

γuh − g ∈ X◦h, (5.11c)

[[∂νu
h]] ∈ Xh. (5.11d)

Proof. If uh = Gh
u(s)g = S(s)Gh

λ(s)g, then it is clear that uh satisfies (5.11a) and (5.11b).
Moreover, defining λh := Gh

λ(s)g, then

[[∂νu
h]] = λh ∈ Xh γuh − g = V(s)λh − g ∈ X◦h,

by (5.5). This proves that uh solves (5.11).
Reciprocally, if uh satisfies (5.11), and we define λh := [[∂νu

h]] ∈ Xh, then by the
representation formula for the solutions of ∆− s2, we can write

uh = S(s)[[∂νu
h]]−D(s)[[γuh]] = S(s)λh

and therefore
V(s)λh − g = γuh − g ∈ X◦h,

which proves that λh = Gh
λ(s)g and uh = S(s)λh = Gh

u(s)g.

Proposition 5.3.2 (Step #2: variational formulation). Consider the space

Hh := {vh ∈ H1(Rd) : γvh ∈ X◦h}.

The transmission problem (5.11) is equivalent to the variational problem[
uh ∈ H1(Rd) γuh − g ∈ X◦h,
as,Rd(u

h, vh) = 0 ∀vh ∈ Hh.
(5.12)

Proof. If uh solves (5.11), then for all vh ∈ Hh

as,Rd(u
h, vh) = (∇uh,∇vh)Rd + s2(∆uh, vh)Rd\Γ (∆uh = s2uh)

= 〈[[∂νuh]], γvh〉Γ (definition of [[∂ν ·]])
= 0. ([[∂νu

h]] ∈ Xh, γvh ∈ X◦h)

Reciprocally, if uh is a solution to (5.12) it follows readily that ∆uh − s2uh = 0 in Rd \ Γ,
since D(Rd \ Γ) ⊂ Hh. Let now ξ ∈ X◦h and construct vh ∈ H1(Rd) such that γvh = ξ. It
follows then that vh ∈ Hh. Therefore

〈[[∂νuh]], ξ〉Γ = 〈[[∂νuh]], γvh〉Γ
= (∇uh,∇vh)Rd + s2(∆uh, vh)Rd\Γ (definition of [[∂ν ·]])
= as,Rd(u

h, vh) (∆uh = s2uh)

= 0 (vh ∈ Hh),

and therefore [[∂νu
h]] ∈ Xh by (5.10).
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Proposition 5.3.3 (Step #3: energy/coercivity estimate). There exists CΓ such that,
for all g ∈ H1/2(Γ),

|||uh||||s|,Rd ≤ CΓ
|s|3/2

σ σ1/2
‖g‖1/2,Γ, ∀s ∈ C+, ∀h, (5.13)

where uh is the solution of (5.12). Therefore

‖Gh
u(s)‖H1/2(Γ)→H1(Rd) ≤ CΓ

|s|3/2

σ σ3/2
. (5.14)

Proof. Recall first that the bilinear form as,Rd is coercive (see (2.13)) in the energy norm

Re
(
e−ıArg sas,Rd(v, v)

)
=

σ

|s|
|||v|||2s,Rd ∀v ∈ H1(Rd). (5.15)

Using the lifting of Proposition 2.5.1 it is easy to contruct liftings (right-inverses of the
trace operator) γ+(s) : H1/2(Γ)→ H1(Rd) such that

|||γ+(s)g||||s|,Rd ≤ C1 max{1, |s|}1/2‖g‖1/2,Γ ∀g ∈ H1/2(Γ) ∀s ∈ C+. (5.16)

Let us now test equations (5.12) with vh = uh − ug ∈ Hh, where ug = γ+(s)g. Then

σ

|s|
|||uh − ug|||2|s|,Rd = Re

(
e−ıArg sas,Rd(u

h − ug, uh − ug)
)

(by (5.15) or (2.13))

≤ |as,Rd(ug, uh − ug)| (uh solves (5.12))

≤ |||ug||||s|,Rd|||uh − ug||||s|,Rd . (by (2.12))

Therefore,

|||uh||||s|,Rd ≤ |||ug||||s|,Rd +
|s|
σ
|||ug||||s|,Rd ≤ 2

|s|
σ
|||ug||||s|,Rd (see above)

≤ 2C1
|s|
σ

max{1, |s|}1/2‖g||1/2,Γ (by (5.16))

≤ 2C1
|s|3/2

σ σ1/2
‖g||1/2,Γ. (by (2.15))

This proves (5.13). To prove (5.14) use Propositions 5.3.1 and 5.3.2 and the inequality
σ‖u‖1,Rd ≤ |||u||||s|,Rd . Note that this entire group of proofs (from Proposition 5.3.1 and
5.3.3) just repeats at the discrete level what was proved at the continuous level in Section
3.3.

Proposition 5.3.4 (Step #4: boundary wrap-up). There exists CΓ such that

‖Gh
λ(s)‖H1/2(Γ)→H−1/2(Γ) ≤ CΓ

|s|2

σσ
∀s ∈ C+ ∀h.

Proof. Proceeding in this four step program, this last step uses the fact that Gh
λ(s)g =

[[∂νG
h
u(s)g]], Proposition 5.3.3 and Proposition 2.5.2, i.e., the fact that we can bound

‖[[∂νuh]]‖−1/2,Γ ≤ C
|s|1/2

σ1/2
|||uh||||s|,Rd .

Note that we obtain again the direct estimate given by coercivity in (5.7). This should
not be a surprise since coercivity played a key role in the above proofs.
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5.4 The Galerkin error operator

Consider the problem of solving

λh ∈ Xh such that 〈µh,V(s)λh〉Γ = 〈µh,V(s)λ〉Γ ∀µh ∈ Xh

and then defining uh = S(s)λh. We want to study the following operators

Eh
λ(s)λ := λh − λ, Eh

u(s)λ := uh − u = S(s)Eh
λ(s)λ.

It is clear that

Eh
λ(s) = Gh

λ(s)V(s)− I, Eh
u(s) = Gh

u(s)V(s)− S(s) = S(s)(Gh
λ(s)V(s)− I)

and that
Eh
λ(s) = [[∂ν · ]]Eh

u(s).

The process is very similar to the one developed in Section 5.3, and we will only sketch
the four step program in the proof. Details are left to the reader. We will use agan the
space

Hh := {vh ∈ H1(Rd) : γvh ∈ X◦h}.
Note the parallelism of the transmission problems (5.11) and (5.20). They are based on
the same set of exotic transmission conditions. While the study of the Galerkin solver
leads to a non-homogeneous essential transmission condition, the Galerkin error operator
takes us to a non-homogeneous natural transmission condition.

Proposition 5.4.1 (Step #1: transmission problem). Let λ ∈ H−1/2(Γ). Then εhu =
Eh
u(s)λ if and only if

εhu ∈ H1(Rd), (5.17a)

∆εhu − s2εhu = 0 in Rd \ Γ, (5.17b)

γεhu ∈ X◦h, (5.17c)

[[∂νε
h
u]] + λ ∈ Xh. (5.17d)

Proposition 5.4.2 (Step #2: variational formulation). The transmission problem (5.20)
is equivalent to the variational problem[

εhu ∈ Hh,
as,Rd(ε

h
u, v

h) = −〈λ, γvh〉Γ ∀vh ∈ Hh.
(5.18)

Proposition 5.4.3 (Step #3: energy/coercivity estimate). There exists CΓ such that,
for all λ ∈ H−1/2(Γ),

|||εhu||||s|,Rd ≤ CΓ
|s|
σ σ
‖λ‖1/2,Γ, ∀s ∈ C+, ∀h,

where εhu is the solution of (5.21). Therefore

‖Eh
u(s)‖H−1/2(Γ)→H1(Rd) ≤ CΓ

|s|
σ σ2

. (5.19)

Proposition 5.4.4 (Step #4: boundary wrap-up). There exists CΓ such that

‖Eh
λ(s)‖H−1/2(Γ)→H−1/2(Γ) ≤ CΓ

|s|3/2

σσ3/2
∀s ∈ C+ ∀h.
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Galerkin semidiscretization error. Let finally Πh : H−1/2(Γ)→ Xh be the orthogo-
nal projection operator onto Xh. Note that

Eh
λ(s)Π

h = 0,

as a consequence of the fact that if λ ∈ Xh, then λh = λ. In other words this reflects the
fact that Πh and Eh

λ(s) are complementary projections. We will use this property in the
following equivalent form

Eh
λ(s) = Eh

λ(s)(I− Πh) Eh
u(s) = Eh

u(s)(I− Πh),

which is a higly compacted form of a Céa estimate.

5.5 Error estimates

Review. Let us briefly recall the fully discrete method destined to approximate the
solution of

V ∗ λ = g u = S ∗ λ. (5.20)

The Galerkin solver, defined in the Laplace domain in Section 5.3, corresponds to convo-
lution with the operator

Ghλ := L−1{Gh
λ}.

The semidiscrete system is then

λh = Ghλ ∗ g uh = S ∗ λh, (5.21)

while the full discrete CQ-BEM scheme consists of

λhκ = Ghλ,κ ∗ g uhκ = Sκ ∗ λhκ. (5.22)

Note that CQ has been applied to both convolution processes in (5.21), i.e., to the semidis-
crete version of the equation V ∗ λ = g and to the potential posprocessing u = S ∗ λh.
The Laplace domain version of (5.22) is

Λh
κ(s) = Gh

λ,κ(s)G(s) Uh
κ(s) = Sκ(s)Λ

h
κ(s) = Gh

u,κ(s)G(s),

or equivalently,

Λh
κ(s) = Gh

λ(sκ)G(s), Uh
κ(s) = Gh

u(sκ)G(s), where sκ = κ−1p(e−sκ).

Galerkin semidiscretization error. Let finally

Ehλ := L−1{Eh
λ} Ehu := L−1{Eh

u}.

Then
λh − λ = Ehλ ∗ λ = Ehλ ∗ (λ− Πhλ)

and
uh − u = S ∗ (λh − λ) = Ehu ∗ λ = Ehu ∗ (λ− Πhλ).

Proposition 3.2.2 applied to the convolution operators with symbols Eh
λ and Eh

u (analysed
in Propositions 5.4.3 and 5.4.4) gives a closed analysis of the semidiscretization error in
terms of approximation errors.
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Convolution Quadrature error. Since we have been careful in showing how the con-
stants that bound the Galerkin solvers in the Laplace domain are independent of h (see
Propositions 5.3.3 and 5.3.4), the analysis of the time discretization is now just a case of
using the Convolution Quadrature estimates (Proposition 4.6.1 and 4.6.2) to bound

‖(λh − λhκ)(t)‖−1/2,Γ = ‖(Ghλ ∗ g − Ghλ,κ ∗ g)(t)‖−1/2,Γ

and
‖(uh − uhκ)(t)‖1,Rd = ‖(Ghu ∗ g − Ghu,κ ∗ g)(t)‖1/2,Γ.

All these results are collected in the following propositions. Note that regularity require-
ments for full order of convergence of the density and of the potential are different. We
will come back and improve all these results when we approach the analysis of poten-
tials (continuous and semidiscrete) and of the fully discrete methods using time domain
techniques.

5.6 Exercises

1. (Section 5.3) Prove (5.10). You can actually prove the samel statement in this more
general setting: Xh is a closed subspace of a Hilbert space X and X◦h ⊂ X ′ is its
polar set. (Hint. You can decompose X = Xh ⊕ X⊥h and relate X>h ⊂ X with
X◦h ⊂ X ′ with the Riesz representation map.)

2. (Section 5.4) Prove all the results of this section.

3. (Section 5.4) Show that the Galerkin error operator Eh
λ(s) is a projection. Give a

characterization of its range. (Hint. The range depends on s.)

81



Chapter 6

Second order equations by
separation of variables

In this chapter we are going to introduce some elementary tools of evolution equations
and to apply them for some further analysis of time domain potentials and integral op-
erators. Most of the results in the abstract treatment of evolution equations that follow
can be obtained with elementary tools of the theory of strongly continuous semigroups of
operators (of groups of isometries actually). We are going to approach this theory with
a different point of view, namely the method of separation of variables. (By the way,
this approach is more restrictive, but it completely serves our purposes.) The main tools
for the analysis are the Hilbert-Schmidt theorem and some basic results on continuity of
functions defined by series. They will be reviewed in the last section of this chapter for
ease of reference. The results of this chapter are adapted and expanded from [9, Section
8] and [20, Section 3].

6.1 The basic setup

Two spaces to start with. We consider two real Hilbert spaces

V ⊂ H

with continuous, compact and dense injection. The norm of H, ‖ · ‖H will be the
one we will use to measure kinetic energy. We also consider a finite dimensional space

M ⊂ V

that we will call the space of rigid motions, the orthogonal projection P : H →M and
the closed subspace

H0 := {u ∈ H : (u,m)H = 0 ∀m ∈M} = M⊥.

On V we assume that the norm is given in the form

‖v‖2
V := [v, v] + (Pv, v)H = [v, v] + ‖Pv‖2

H
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where [ · , · ] is a symmetric positive semidefinite bilinear form such that

[ · ,m] = 0 ∀m ∈M.

This property is equivalent to

[m,m] = 0 ∀m ∈M.

Note that since ‖ · ‖V is a norm, it is easy to prove that

[u, v] = 0 ∀v ∈ V ⇐⇒ u ∈M.

Note finally that for an element of the space

V0 := {u ∈ V : Pu = 0} = V ∩H0

the norm is just ‖u‖V = [u, u]1/2. This seminorm in V will be the one taking care
of measuring potential energy. The continuity of the injection of V into H can be
expressed with the inequality

‖u‖H ≤ C◦‖u‖V ∀u ∈ V. (6.1)

For reasons that will be understood in the following chapters, it is important to keep track
of all occurences of this constant C◦.

A third space and an operator. We assume the existence of a third space

D(A) ⊂ V ⊂ H with M ⊂ D(A)

and a linear operator A : D(A)→ H such that the norm

‖u‖2
D(A) := ‖Au‖2

H + ‖u‖2
V

makes D(A) a Hilbert space. The final elements for this abstract construction are:

(a) an abstract Green’s Identity

(Au, v)H + [u, v] = 0 ∀u ∈ D(A) ∀v ∈ V, (6.2)

(b) and a surjectivity property:

A− I : D(A)→ H is onto.

Proposition 6.1.1. Assuming all the hypotheses above, it follows that:

(a) kerA = M

(b) R(A) := {Au : u ∈ D(A)} ⊂ H0

(c) A− I : D(A)→ H is invertible
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(d) A− I : M →M is just the minus identity operator.

(e) A− I : D(A) ∩H0 → H0 is invertible.

Proof. To prove (a) note first that if Au = 0, then by (6.2) it follows that [u, u] = 0 and
therefore u ∈M . Conversely, if u ∈M , then

0 = (Au, v)H + [u, v] = (Au, v)H ∀v ∈ V.

This implies that Au = 0 because V is dense in H. To prove (b) note that if f = −Au,
then

(f,m)H = (−Au,m)H = [u,m] = 0 ∀m ∈M.

To prove (c) we only need to show that A − I is injective. If −Au + u = 0, then, using
(6.2),

0 = −(Au, u)H + (u, u)H = [u, u] + (u, u)H

and therefore u = 0. Properties (d) and (e) are straightforward.

Removing density as a hypothesis. The density of the inclusion of V in H is only
used in proving that M ⊂ kerA (we will use it later on). Assuming that M ⊂ kerA, we
can actually get to prove that V is dense in H as a byproduct of a much more demanding
theoretical development.

A fast list of examples. It is useful to keep in mind many of the following examples
to see how this abstract framework will help to describe several problems related to wave
propagation. In all the examples Ω is a bounded set with Lipschitz boundary and the
norm of L2(Ω) is the standard one.

(1) Take

H = L2(Ω), V = H1
0 (Ω), D(A) = {u ∈ H1

0 (Ω) : ∆u ∈ L2(Ω)},

with the Dirichlet form as the bilinear form

[u, v] := (∇u,∇v)Ω,

with A := ∆. In this case M = {0} and the constant C◦ in (6.1) is that of the
Poincaré-Friedrichs inequality.

(2) We can also take

H = L2(Ω), V = H1(Ω), D(A) := {u ∈ H1(Ω) : ∆u ∈ L2(Ω), ∂νu = 0}

with the same [ · , · ], A := ∆ again and M = P0(Ω), the space of constant func-
tions. The abstract Green’s Identity is these two first examples is just a consequence
of Green’s identity after substituting the corresponding homogeneous boundary con-
dition.
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(3) Related to the biharmonic operator we can take

H = L2(Ω), V = H2
0 (Ω), D(A) := {u ∈ H2

0 (Ω) : ∆2u ∈ L2(Ω)}

with the bilinear form
[u, v] := (∆u,∆v)Ω,

the space of rigid motions M := P1(Ω), including all plane displacements and A :=
−∆2. The abstract Green’s Identity is now a weak formulation of the Rayleigh–
Green theorem. The bilinear form can also be written as follows

[u, v] := ν(∆u,∆v)Ω + (1− ν)(Hu,H v)Ω, (6.3)

where Hu is the Hessian matrix of u and ν ∈ [0, 1]. The fact that these two bilinear
forms coincide in H2

0 (Ω) follows from a simple density argument.

(4) The bilinear form (6.3) and the operator A := −∆2 can be used for three choices of
the space V

H2(Ω) ∩H1
0 (Ω), H2(Ω), or {u ∈ H2(Ω) : ∂νu = 0}.

In the case of smooth boundary ∂Ω, the corresponding space D(A) can be described
using two higher order boundary conditions. (In the general case, unexpected diffi-
culties are met because of paradoxes related to the impossibility of cleanly separating
the boundary conditions γu and ∂νu for elements of H2(Ω) in some domains.)

(5) The linear elasticity system fits in this frame by using the bilinear form

[u,v] :=
(
Cε(u), ε(v)

)
Ω

ε(u) := 1
2
(∇u + (∇u)>)

where C is a linear operator (a tensor) allowing for the bilinear form to be symmetric
and the coercivity condition

[u,u] ≥ CC‖ε(u)‖2
Ω ∀u ∈ H1(Ω)d

to hold. With the spaces

H := L2(Ω)2, V := H1
0 (Ω)d, D(A) := {u ∈ V : div (Cε(u)) ∈ L2(Ω)d},

M = {0} and A := div (Cε(u)) we can describe problems where displacement is
given on the boundary. The weak form of the normal stress can be defined as
an element of H−1/2(Γ)d with Betti’s formula (Green’s formula for the elasticity
system):

〈σν(u), γv〉Γ := (div (Cε(u)),v)Ω + (Cε(u), ε(v))Ω

With the same H but

V := H1(Ω)d, D(A) := {u ∈ V : div (Cε(u)) ∈ L2(Ω)d, σν(u) = 0},
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we can describe problem with free boundary conditions. In this case, there is a
space of rigid motions related to the problem: in two dimensions, M contains the
functions [

a1

a2

]
+

[
0 −a3

a3 0

] [
x1

x2

]
,

whereas in three dimensions, it contains the functions a1

a2

a3

+

 0 a4 −a5

−a4 0 a6

a5 −a6 0

 x1

x2

x3

 .
Fast forward. The remainder of this chapter is related to proving existence, uniqueness
and stability properties for some initial value problems related to second order differential
equations and the operator A. For the reader who is not interested in learning about the
proofs (or is already acquainted with deeper mathematical techniques from which these
result follow), we give here the results in a fast way.

• The Cauchy problem: if u0 ∈ D(A) and v0 ∈ V , then the problem

ü(t) = Au(t) t ≥ 0, u(0) = u0, u̇(0) = v0

has a unique solution in the space

C2([0,∞);H) ∩ C1([0,∞);V ) ∩ C([0,∞);D(A)).

Existence of solution is proved in Proposition 6.3.1. Uniqueness is proved in Propo-
sition 6.3.2.

• Strong solutions of non-homogeneous problems: if f : [0,∞) → V0 is continuous,
the problem

ü(t) = Au(t) + f(t) t ≥ 0, u(0) = u̇(0) = 0

has a unique solution in the space

C2([0,∞);H) ∩ C1([0,∞);V ) ∩ C([0,∞);D(A)).

Moreover, for all t ≥ 0

C−1
◦ ‖u(t)‖H ≤ ‖u(t)‖V ≤

∫ t

0

‖f(τ)‖Hdτ, ‖Au(t)‖H ≤
∫ t

0

‖f(τ)‖V dτ.

Existence of solution is shown in Proposition 6.4.2. The bounds are given in Propo-
sition 6.4.3. We will also provide the following bounds for the derivative

‖u̇(t)‖H ≤
∫ t

0

‖f(τ)‖Hdτ, ‖u̇(t)‖V ≤
∫ t

0

‖f(τ)‖V dτ.
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• Weak solutions of non-homogeneous problems: if f : [0,∞)→ H0 is continuous, the
problem

〈ü(t), v〉V ′×V + [u(t), v] = (f(t), v)H ∀v ∈ V, ∀t ≥ 0, u(0) = u̇(0) = 0

has a unique solution in the space

C2([0,∞);V ′) ∩ C1([0,∞);H) ∩ C([0,∞);V ).

Moreover, for all t ≥ 0

C−1
◦ ‖u(t)‖H ≤ ‖u(t)‖V ≤

∫ t

0

‖f(τ)‖Hdτ and ‖u̇(t)‖H ≤
∫ t

0

‖f(τ)‖Hdτ.

This is proved in Proposition 6.5.1.

• Finally, in Proposition 6.5.2 we will show that for f ∈ C1([0,∞);H0) with f(0) = 0,
the problem

ü(t) = Au(t) + f(t) t ≥ 0, u(0) = u̇(0) = 0

has a unique solution in the space

C2([0,∞);H) ∩ C1([0,∞);V ) ∩ C([0,∞);D(A))

satisfying

C−1
◦ ‖u(t)‖H ≤ ‖u(t)‖V ≤

∫ t

0

‖f(τ)‖Hdτ, ‖Au(t)‖H ≤ 2

∫ t

0

‖ḟ(τ)‖Hdτ.

The theory about the Cauchy problem is standard in the theory of C0-groups of isometries
generated by unbounded operators. The theory for non-homogeneous problems with the
given regularity for f is not so standard.

6.2 Green’s operator

Definition of the abstract Green operator. We return to the abstract setting of
Section 6.1 and we define the operator G : H0 → H0 by

Gf = u where

[
u ∈ V0

[u, v] = (f, v)H ∀v ∈ V
(
⇔ ∀v ∈ V0

)
.

This operator is well defined because it is just the Riesz-Fréchet representation in V0 of the
bounded linear functional (f, · )H : V0 → R. Note that if u ∈ V0 ∩D(A) and −Au = f ,
then by the abstract Green Identity

0 = (Au, v)H + [u, v] = −(f, v)H + [u, v] ∀v ∈ V,

and therefore u = Gf . This means that G is providing us a solution of the equation
−Au = f . The following properties are simple consequences of the hypotheses for the
spaces and the operators.
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Proposition 6.2.1 (Functional properties of Green’s operator). Assuming all the hy-
potheses of Section 6.1, it follows that:

(a) With the constant C◦ > 0 of inequality (6.1)

‖Gf‖V ≤ C◦‖f‖H ∀f ∈ H0. (6.4)

(b) The operator G is compact.

(c) The operator G is self-adjoint and positive definite.

Proof. To prove (a) we just need to notice that since u = Gf ∈ V0, then

‖u‖2
V = [u, u] = (f, u)H ≤ ‖f‖H‖u‖H ≤ C◦‖f‖H‖u‖V .

Since the injection of V0 in H0 is compact, the bound (6.4) proves the compactness of
G : H0 → H0. The proof of (c) is a direct consequence of the definition:

(f,Gg)H = [Gf,Gg] = [Gg,Gf ] = (g,Gf)H .

From this equality it also follows that G is positive semidefinite. Positive definiteness is
then reduced to showing that G is injective: if Gf = 0 then

0 = [Gf, v] = (f, v)H = 0 ∀v ∈ V,

but since V is dense in H it follows that f = 0.

The associated spectral decomposition. Proposition 6.2.1 leaves us in place to
apply the Hilbert-Schmidt decomposition theorem (Theorem 6.7.1 below): we can find a
Hilbert basis of H0, {φn}, and a sequence of positive non-increasing eigenvalues λn > 0
converging to zero, and write

G =
∞∑
n=1

λn( · , φn)Hφn. (6.5)

Every u ∈ H can be expressed as an H-orthogonal sum.

u = Pu+
∞∑
n=1

(u, φn)Hφn. (6.6)

As a first observation, note that, since Gφn = λnφn, then

[φn, φm] = λ−1
n [Gφn, φm] = λ−1

n (φn, φm)H = λ−1
n δn,m ∀n,m (6.7)

and that therefore

λn =
(φn, φn)H
[φn, φn]

=
‖φn‖2

H

‖φn‖2
V

≤ C2
◦ , (6.8)

following (6.1). We now move on to characterize the spaces V and D(A) and the operator
A in terms of the elements (eigenvalues and eigenfunctions) that appear in the series
representation (6.5) of Green’s operator.

88



Proposition 6.2.2 (Series characterization of the energy space). Assuming the hypotheses
of Section 6.1 and with the spectral decomposition of G given in (6.5) it follows that:

(a) {λ1/2
n φn} is a Hilbert basis of V0.

(b) The seminorm of V (the norm of V0) can be represented in series form as

[u, u] =
∞∑
n=1

λ−1
n |(u, φn)H |2 ∀u ∈ V.

Therefore

‖u‖2
V =

∞∑
n=1

λ−1
n |(u, φn)H |2 + ‖Pu‖2

H ∀u ∈ V.

(c) V0 = R(G1/2), where

G1/2 =
∞∑
n=1

λ1/2
n ( · , φn)Hφn.

Consequently, V = M ⊕R(G1/2).

Proof. The identities (6.7) prove that λ
1/2
n φn is an orthonormal set in V0. Since

[u, φn] = λ−1
n (φn, u)H ∀n ∀u ∈ V0, (6.9)

it follows that {φn} is complete in V0 and (a) is proved. In turn, this shows that

[u, u] =
∞∑
n=1

∣∣[u, λ1/2
n φn]

∣∣2 =
∞∑
n=1

λn
∣∣[u, φn]

∣∣2 =
∞∑
n=1

λ−1
n |(u, φn)H |2 ∀u ∈ V0

(we have applied (6.9) again), from where (b) follows readily. Finally, by Picard’s criterion
(Theorem 6.7.2 below) applied to the compact self-adjoint positive definite operator G1/2

(see Section 6.7) it follows that

R(G1/2) = {u ∈ H0 :
∞∑
n=1

λ−1
n |(u, φn)H |2 <∞}.

Therefore V0 ⊂ R(G1/2) and [u, u]1/2 = ‖u‖V = ‖u‖R(G1/2) for all u ∈ V0. However, the
linear combinations of the eigenfunctions {φn} form a dense subset of V0 that is also dense
in R(G1/2), which implies the equality of both sets.

Proposition 6.2.3 (Series characterization of D(A)). Assuming the hypotheses of Section
6.1 and with the spectral decomposition of G given in (6.5) it follows that

R(G) = {u ∈ H0 :
∞∑
n=1

λ−2
n |(u, φn)H |2 <∞} = D(A) ∩H0 (6.10)
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and

∞∑
n=1

λ−2
n |(u, φn)H |2 + ‖Pu‖2

H ≤ ‖u‖2
D(A)

≤ (1 + C2
◦)
∞∑
n=1

λ−2
n |(u, φn)H |2 + ‖Pu‖2

H ∀u ∈ D(A).

Proof. Let start by defining B : R(G)→ H0 by

Bu := −
∞∑
n=1

λ−1
n (u, φn)Hφn

(i.e., B = −G−1).
If u ∈ D(A) ∩H0 ⊂ V0, then by Green’s Identity (6.2)

[u, v] = −(Au, v)H ∀v ∈ V

and therefore, by the definition of G, u = −GAu ∈ R(G). This also implies that

(u, φn)H = −(GAu, φh)H

= −(Au,Gφn)H (G is selfadjoint)

= −λn(Au, φn)H (Gφn = λnφn)

and therefore

Bu = −
∞∑
n=1

λ−1
n (u, φn)Hφn

=
∞∑
n=1

(Au, φn)Hφn

= Au. (Au ∈ H0 by Proposition 6.1.1(b))

We have so far proved that D(A)∩H0 ⊂ R(G) and that Au = Bu for all u ∈ D(A)∩H0.
We already know by Proposition 6.1.1(e) that A− I : D(A)∩H0 → H0 is a bijection.

Using the characterization of R(G) given by Picard’s criterion (Theorem 6.7.2) we can
easily show that I−B : R(G)→ H0 is also a bijection. However, (I−B)|D(A)∩H0 = I−A,
and therefore D(A) ∩H0 = R(G) and

Au = −
∞∑
n=1

λ−1
n (u, φn)Hφn ∀u ∈ D(A). (6.11)

(Note that the expression (6.11) includes the fact that Au = 0 for u ∈ M .) Moreover, if
u ∈ D(A) ∩H0 = R(G), then

‖u‖2
D(A) =

∞∑
n=1

λ−2
n |(u, φn)H |2 + [u, u] =

∞∑
n=1

(λ−2
n + λ−1

n )|(u, φn)H |2 (6.12)
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by Proposition 6.2.2(b) and therefore

‖u‖2
D(A) =

∞∑
n=1

(λ−2
n + λ−1

n )|(u, φn)H |2 + ‖Pu‖2
H ∀u ∈ D(A). (6.13)

The final bound is a simple consequence of (6.13) and (6.8).

Final remark. As a direct consequence of (6.11) it is clear that

−Aφn = λ−1
n φn ∀n.

Moreover, if we look for eigenvalues of A, apart from the inverses of the eigenvalues of
the Green operator, the only other possible eigenvalue is λ = 0 with the elements of the
space of rigid motions M as eigenfunctions. Therefore, the eigenvalues of the (unbounded)
operator −A diverge to infinity.

6.3 The Cauchy problem

Abstract wave equations. We still assume all the hypotheses of Section 6.1 and con-
sider the problem  ü(t) = Au(t) t ∈ [0,∞),

u(0) = u0,
u̇(0) = v0,

(6.14)

for initial data u0 ∈ D(A) and v0 ∈ V . Associated to the spectral series representation of
the unbounded operator A

Au = −
∞∑
n=1

λ−1
n (u, φn)Hφn,

we can define the natural frequencies (modes):

ξn := λ−1/2
n > 0 lim

n→∞
ξn =∞.

Proposition 6.3.1 (Solution by separation of variables). Let u0 ∈ D(A) and v0 ∈ V .
The function

u(t) := Pu0 + t Pv0 +
∞∑
n=1

cos(ξn t)(u0, φn)Hφn +
∞∑
n=1

ξ−1
n sin(ξn t)(v0, φn)Hφn (6.15)

is a strong solution of the Cauchy problem (6.14)

u ∈ C2(R;H) ∩ C1(R;V ) ∩ C(R;D(A)). (6.16)
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Proof. Consider first the functions

cn(t) := cos(ξn t)(u0, φn)Hφn, cn : R→ D(A).

By (6.13), it follows that

‖cn(t)‖2
D(A) = (λ−2

n + λ−1
n )| cos(ξn t)|2|(u0, φn)H |2 ≤ (1 + C2

◦)λ
−2
n |(u0, φn)H |2

with
∞∑
n=1

λ−2
n |(u0, φn)H |2 <∞ (6.17)

because u0 ∈ D(A), by Proposition 6.2.3. The values cn(t) and cm(t) are D(A)-orthogonal
for all t. We can then apply Lemma 6.7.3 to show that

c(t) := Pu0 +
∞∑
n=1

cos(ξn t)(u0, φn)Hφn (6.18)

defines a continuous function R → D(A). Its value at t = 0 is c(0) = u0 by (6.6). This
function is also continuous from R to V . We next note that

ċn(t) = −ξn sin(ξn t)(u0, φn)Hφn = −λ−1/2
n sin(ξn t)(u0, φn)Hφn

and that by Proposition 6.2.2(b)

‖ċn(t)‖2
V = λ−1

n

∣∣λ−1/2
n sin(ξn t)(u0, φn)H

∣∣2 ≤ λ−2
n |(u0, φn)H |2.

Using Lemma 6.7.4, we deduce that the function c(t) in (6.18) is C1 with values in V (and
therefore in H). Its derivative is

ċ(t) = −
∞∑
n=1

λ−1/2
n sin(ξn t)(u0, φn)Hφn

with convergence in V (and in H). Also ċ(0) = 0. We can proceed similarly to show that
ċ ∈ C1(R, H) and that

c̈(t) = −
∞∑
n=1

ξ2
n(u0, φn)Hφn = −

∞∑
n=1

λ−1
n (u0, φn)Hφn = A

(
u(t)

)
.

We can use exactly the same ideas to analyze

s(t) := t Pv0 +
∞∑
n=1

ξ−1
n sin(ξn t)(v0, φn)Hφn = t Pv0 +

∞∑
n=1

sn(t),

using now the bound

∞∑
n=1

λ−2
n

∣∣ξ−1
n (v0, φn)H

∣∣2 =
∞∑
n=1

λ−1
n |(v0, φn)H |2

due to the fact that v0 ∈ V and Proposition 6.2.2.
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Going backwards in time. It is clear that the expression in (6.15) works also for
negative values of t and that we have found a formula for the solution of (6.14) valid for
all t ∈ R.

Proposition 6.3.2 (Energy conservation). Let u be the solution of the Cauchy problem
(6.14) given by (6.15). Then, the energy

e(t) := 1
2
[u(t), u(t)] + 1

2
(u̇(t), u̇(t))H

is a constant function of t. Finally, problem (6.14) has a unique solution.

Proof. Conservation of energy follows from the following facts (we use the same notation
of the proof of Proposition 6.3.1). First of all, we have the convergent V -orthogonal sum

u(t) = c(t) + s(t) = Pu0 + t Pv0 +
∞∑
n=1

(cn(t) + sn(t)),

and the convergent H-orthogonal sum

u̇(t) = Pv0 +
∞∑
n=1

(ċn(t) + ṡn(t)).

Next, using that [φn, φn] = λ−1
n = ξ2

n, we prove that

[cn(t) + sn(t), cn(t) + sn(t)] = ξ2
n cos2(ξn t)|(u0, φn)H |2 + sin2(ξn t)|(v0, φn)H |2

+2 cos(ξn t)ξn sin(ξn t) (u0, φn)H(v0, φn)H ,

while

(ċn(t) + ṡn(t), ċn(t) + ṡn(t))H = ξ2
n sin2(ξn t)|(u0, φn)H |2 + cos2(ξn t)|(v0, φn)H |2

−2ξn sin(ξn t) cos(ξn t) (u0, φn)H(v0, φn)H ,

Hence

2e(t) =
∞∑
n=1

[cn(t) + sn(t), cn(t) + sn(t)] + ‖Pv0‖2
H +

∞∑
n=1

(ċn(t) + ṡn(t), ċn(t) + ṡn(t))H

= ‖Pv0‖2
H +

∞∑
n=1

ξ2
n|(u0, φn)H |2 +

∞∑
n=1

|(v0, φn)H |2

= [u0, u0] + (v0, v0)H .

The energy conservation property can also be proved directly, assuming that u has the
regularity (6.16) and showing that

ė(t) = (ü(t), u̇(t))H + [u(t), u̇(t)] = (Au(t), u̇(t))H + [u(t), u̇(t)] = 0

by the associated Green Identity. This also shows that if initial data are set to zero, then
u̇(t) = 0 for all t and therefore u(t) ≡ u(0) = 0.
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6.4 Strong solutions to non-homogeneous problems

The problem. The context of this section is exactly the one of the preceding sections
(hypotheses are exposed in Section 6.1). In this case we want to study the problem ü(t) = Au(t) + f(t) t ∈ [0,∞),

u(0) = 0,
u̇(0) = 0,

(6.19)

where f : [0,∞) → V0 is a continuous function. The solution of this problem can be
expressed with a causal convolution, which is nothing but the representation using the
formula of variation of constants (a.k.a. Duhamel’s principle). This is where we will
later make this theory meet the theory of retarded potentials and operators. The more
general case, when f(t) ∈ V will be treated in Section 6.6, by considering the solution
corresponding to a right hand side Pf(t).

The following lemma is traightforward to prove.

Lemma 6.4.1. Let g : [0,∞)→ R be a continuous function, ω > 0 and

α(t) := ω−1

∫ t

0

sin(ω(t− τ))g(τ)dτ.

Then α ∈ C2([0,∞)) and

α(0) = α̇(0) = 0 α̈ + ω2α = g in [0,∞).

Proposition 6.4.2 (Duhamel’s principle in series form). Let f ∈ C([0,∞);V ) and con-
sider the functions

un(t) :=
(∫ t

0

ξ−1
n sin(ξn(t− τ)) (f(τ), φn)Hdτ

)
φn n ≥ 1. (6.20)

Then

u(t) :=
∞∑
n=1

un(t)

is the unique solution of (6.19) and

u ∈ C2([0,∞), H) ∩ C1([0,∞), V ) ∩ C([0,∞), D(A)).

Proof. Properties of the functions un(t). Applying Lemma 6.4.1 to the functions g :=
(f(·), φn)H , it follows that the functions un are in C2([0,∞), D(A)). Also

u̇n(t) =
(∫ t

0

cos(ξn(t− τ)) (f(τ), φn)Hdτ
)
φn, (6.21)

and

ün(t) = (f(t), φn)Hφn − ξ2
nun(t) (by Lemma 6.4.1)

= (f(t), φn)Hφn + Aun(t) (Aφn = −ξ2
nφn = −λ−1

n φn). (6.22)

94



It is also straightforward to see that, because of the orthogonality of the functions φn,

(un(t), um(τ))H = 0 n 6= m, t, τ ∈ [0,∞), (6.23a)

[un(t), um(τ)] = 0 n 6= m, t, τ ∈ [0,∞), (6.23b)

(Aun(t), Aum(τ))H = 0 n 6= m, t, τ ∈ [0,∞). (6.23c)

Continuity in D(A) and first initial condition. Using (6.13) (series expression for the
norm in D(A)), we can write for all t ≤ T

‖un(t)‖2
D(A) = (λ−2

n + λ−1
n )
∣∣∣ ∫ t

0

ξ−1
n sin(ξn(t− τ))(f(τ), φn)Hdτ

∣∣∣2
= (λ−1

n + 1)
∣∣∣ ∫ t

0

sin(ξn(t− τ))(f(τ), φn)Hdτ
∣∣∣2 (ξ−2

n λ−1
n = 1)

≤ (λ−1
n + 1)t

∫ t

0

|(f(τ), φn)H |2dτ (Cauchy-Schwarz)

≤ T

∫ T

0

(λ−1
n + 1)|(f(τ), φn)H |2dτ =: Mn = Mn(T ).

On the other hand, by the Monotone Convergence Theorem

∞∑
n=1

Mn = T

∫ T

0

∞∑
n=1

(λ−1
n + 1)|(f(τ), φn)|2dτ ≤ T

∫ T

0

(
‖f(τ)‖2

V + ‖f(τ)‖2
H

)
dτ,

where we have applied that {φn} is orthonormal in H and Proposition 6.2.2. Using Lemma
6.7.3 in the space D(A) (note the orthogonality given by (6.23a) and (6.23c)), it follows
that u ∈ C([0, T ], D(A)) for all T > 0 and thus u ∈ C([0,∞), D(A)). Since convergence
of the series defining u is valid for all t (it is uniform in compact intervals), it also follows
that

u(0) =
∞∑
n=

un(0) = 0. (6.24)

Also, using that A : D(A)→ H is bounded, we can write

Au(t) =
∞∑
n=1

Aun(t) in H, uniformly in [0, T ] for all T . (6.25)

Differentiability in V and second initial condition. By Proposition 6.2.2 and the expression
for u̇n given in (6.21), we can write

‖un(t)‖2
V + ‖u̇n(t)‖2

V = λ−1
n

∣∣∣ ∫ t

0

ξ−1
n sin(ξn(t− τ))(f(τ), φn)Hdτ

∣∣∣2
+λ−1

n

∣∣∣ ∫ t

0

cos(ξn(t− τ))(f(τ), φn)Hdτ
∣∣∣2

≤ (1 + λ−1
n )t

∫ t

0

|(f(τ), φn)H |2dτ ≤Mn ∀t ≤ T.
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We then use Lemma 6.7.4 in the space V to show that u ∈ C1([0, T ], V ) for all T and thus
u ∈ C1([0,∞), V ). Since the series that defines u can be differentiated term by term (see
Lemma 6.7.4) it also follows that

u̇(0) =
∞∑
n=1

u̇n(0) = 0. (6.26)

Second order differentiability in H and differential equation. We first note that

∞∑
n=1

ün(t) =
∞∑
n=1

(
Aun(t) + (f(t), φn)Hφn

)
(by (6.22)

= Au(t) + f(t), (by (6.25) and Lemma 6.7.5)

with convergence in H, uniformly for all t ∈ [0, T ] and for all T > 0. Since
∑∞

n=1 u̇n(t) =
u̇(t) in H, uniformly in t ∈ [0, T ], this implies that

ü = Au+ f ∈ C([0,∞), H). (6.27)

Conclusion. Note that we have proved all desired continuity properties, the differential
equation (6.27), and the initial conditions (6.24) and (6.26). Further, we have proved
that the series

∑
n un(t) converges in D(A) uniformly on bounded intervals, that

∑
n u̇n(t)

converges in V uniformly on bounded intervals and
∑

n ün(t) converges in H uniformly
on bounded intervals.

Proposition 6.4.3. With the notation of the previous proposition, the following bounds
hold for all t ≥ 0:

‖u(t)‖D(A) ≤
√

1 + C2
◦

∫ t

0

‖f(τ)‖V dτ, (6.28a)

‖Au(t)‖H ≤
∫ t

0

‖f(τ)‖V dτ, (6.28b)

‖u(t)‖V ≤
∫ t

0

‖f(τ)‖Hdτ, (6.28c)

‖u̇(t)‖V ≤
∫ t

0

‖f(τ)‖V dτ, (6.28d)

‖u̇(t)‖H ≤
∫ t

0

‖f(τ)‖Hdτ. (6.28e)

Proof. Let us fix a value of t and consider the functions

[0, t] 3 τ 7−→ gn(τ ; t) := ξ−1
n sin(ξn(t− τ))(f(τ), φn)Hφn

as well as their sum

g(τ ; t) :=
∞∑
n=1

gn(τ ; t), (6.29)
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assuming that this series converges. Since

‖gn(τ ; t)‖2
D(A) ≤ (λ−1

n + 1)|(f(τ), φn)H |2 ∀τ ∈ [0, t] ∀n (6.30)

it follows that g(τ ; t) is well defined for all τ and that

‖g(τ ; t)‖2
D(A) =

∞∑
n=1

‖gn(τ ; t)‖2
D(A) ≤ (1 + C2

◦)‖f(τ)‖2
V ≤ C ∀τ ∈ [0, t].

This proves that g( · ; t) ∈ L2(0, t;D(A)) ⊂ L1(0, t;D(A)) and therefore∥∥∥∫ t

0

g(τ ; t)dτ
∥∥∥
D(A)

≤
∫ t

0

‖g(τ ; t)‖D(A)dτ ≤
√

1 + C2
◦

∫ t

0

‖f(τ)‖V dτ.

Since the functions gn( · ; t) are orthogonal in L2(0, t;D(A)), the bound (6.30) also shows
that the series (6.29) converges in L2(0, t;D(A)) and therefore in L1(0, t;D(A)). Thus

u(t) =
∞∑
n=1

fn(t) =
∞∑
n=1

∫ t

0

gn(τ ; t)dτ =

∫ t

0

∞∑
n=1

gn(τ ; t)dτ =

∫ t

0

g(τ ; t)dτ

and the proof of (6.28a) is finished. The other bounds are very similar and left to the
reader as an exercise.

6.5 Weak solutions of non-homogeneous equations

In this section we study problems of the form ü(t) = Au(t) + f(t) t ∈ [0,∞),
u(0) = 0,
u̇(0) = 0,

(6.31)

where f : [0,∞) → H0 is a continuous function. We will look for some kind of weak
solutions to this equation. First of all, note that if V ′ is the representation of the dual of
V that follows from identifying H with H ′ (that is, we are considering the Courant triad
V ⊂ H ∼= H ′ ⊂ V ′), then

‖v‖V ′ ≤ C◦‖v‖H ∀v ∈ H.

Moreover, A can be extended to a bounded operator A : V → V ′ by using the Green’s
Identity

〈Au, v〉V ′×V := −[u, v] ∀u, v ∈ V.

The series representation for A is still valid but convergence of the series

Au = −
∞∑
n=1

λ−1
n (u, φn)Hφn
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is in V ′ (and not in H any more). A weak solution of (6.31) will thus be a solution of this
problem with the differential equation valid in V ′ for all t, or equivalently, a solution of 〈ü(t), v〉V ′×V + [u(t), v] = (f(t), v)H ∀v ∈ V t ∈ [0,∞),

u(0) = 0,
u̇(0) = 0,

(6.32)

Note that the solution given by Proposition 6.4.2 is easily seen to be a weak solution.

Proposition 6.5.1. For any continuous f : [0,∞) → H0, problem (6.32) has a unique
solution

u ∈ C2([0,∞);V ′) ∩ C1([0,∞);H) ∩ C0([0,∞);V ) (6.33)

and the following bounds hold for all t ≥ 0:

C−1
◦ ‖u(t)‖H ≤ ‖u(t)‖V ≤

∫ t

0

‖f(τ)‖Hdτ,

‖u̇(t)‖H ≤
∫ t

0

‖f(τ)‖Hdτ.

Moreover, the function

w(t) :=

∫ t

0

u(τ)dτ (6.34)

is in C([0,∞);D(A)).

Proof. We first consider the following modified problem v̈(t) = Av(t) +G1/2f(t) t ∈ [0,∞),
v(0) = 0,
v̇(0) = 0.

(6.35)

Since G1/2f : [0,∞) → V0 is continuous, we can apply Propositions 6.4.2 and 6.4.3 and
we obtain that problem (6.19) has a solution

v ∈ C2([0,∞);H) ∩ C1([0,∞);V ) ∩ C0([0,∞);D(A)). (6.36)

From Proposition 6.2.2 it follows that

‖Av(t)‖H ≤
∫ t

0

‖G1/2f(τ)‖V dτ =

∫ t

0

‖f(τ)‖Hdτ, (6.37)

‖v(t)‖V ≤
∫ t

0

‖G1/2f(t)‖Hdτ ≤ C◦

∫ t

0

‖f(τ)‖Hdτ, (6.38)

‖v̇(t)‖V ≤
∫ t

0

‖G1/2f(τ)‖V dτ =

∫ t

0

‖f(τ)‖Hdτ. (6.39)

Consider now the operator

G−1/2w :=
∞∑
n=1

λ−1/2
n (w, φn)Hφn = (−A)1/2w.
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(The notation is slightly misleading, because G1/2 is invertible only when we eliminate
rigid motions from the problem.) It is easy to prove that G−1/2 is bounded D(A) → V ,
V → H and therefore H → V ′. Note also that as operators D(A)→ V ′

G−1/2A = AG−1/2, (6.40)

which can be proved by a density argument proving the result for the eigenfunctions φn.
We then define u(t) := G−1/2v(t) and note that the regularity (6.36) for v(t) implies

the regularity (6.33) for u(t). Initial conditions for u are satisfied for obvious reasons.
Finally, with equalities in V ′

ü(t) = G−1/2v̈(t) (G−1/2 is bounded from H to V ′)

= G−1/2Av(t) +G−1/2G1/2f(t) (v satisfies (6.35))

= AG−1/2v(t) + f(t) ((6.40) and f takes values in H0)

= Au(t) + f(t).

In this sense, u(t) is a solution of (6.31) by understading the equation to be held in the
space V ′. Note also that u(t) ∈ V0 for all t, which implies that v(t) = G1/2u(t), and
therefore

‖Av(t)‖H = ‖AG1/2u(t)‖H = ‖u(t)‖V , ‖v(t)‖V = ‖G1/2u(t)‖V = ‖u(t)‖H ,

and
‖v̇(t)‖V = ‖G1/2u̇(t)‖V = ‖u̇(t)‖H .

These equalities and (6.37)-(6.39) finish the bounds for u.
Let us finally consider the function w in (6.34). It is clear that w ∈ C2([0,∞)′H) ∩

C1([0,∞);V ) and that

Aw(t) = ẅ(t)−
∫ t

0

f(τ)dτ (in V ′) ∀t ≥ 0. (6.41)

However, the right hand side of (6.38) is a continuous function with values in H and
therefore, so is Aw.

Proposition 6.5.2. Let f ∈ C1([0,∞);H0) with f(0) = 0. Then the problem ü(t) = Au(t) + f(t) t ∈ [0,∞),
u(0) = 0,
u̇(0) = 0,

has a unique solution

u ∈ C2([0,∞);H) ∩ C1([0,∞);V ) ∩ C([0,∞);D(A)) (6.42)

satisfying the bounds of Proposition 6.5.1 as well as for all t ≥ 0

‖Au(t)‖H ≤ ‖f(t)‖H +

∫ t

0

‖ḟ(τ)‖Hdτ ≤ 2

∫ t

0

‖ḟ(τ)‖Hdτ, (6.43a)

‖u̇(t)‖V ≤
∫ t

0

‖ḟ(τ)‖Hdτ. (6.43b)
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Proof. Let first z : [0,∞)→ V be the solution to 〈z̈(t), v〉V ′×V + [z(t), v] = (ḟ(t), v)H ∀v ∈ V t ∈ [0,∞),
z(0) = 0,
ż(0) = 0,

and define

u(t) :=

∫ t

0

z(τ)dτ.

By Proposition 6.5.1, it follows that u satisfies (6.42). (Note that we are integrating once
in the time variable, which increases time regularity by one index.) Integrating the weak
differential equation satisfied by z and using that f(0) = 0, it follows that

(ü(t), v)H + [u(t), v] = 〈ü(t), v〉V ′×V + [u(t), v] = (f(t), v)H ∀v ∈ V.

Therefore,
ü(t)− f(t) = Au(t) in V ′ t ≥ 0,

but since both sides are in H, this is just the strong differential equation. Finally

‖Au(t)‖H ≤ ‖ü(t)‖H + ‖f(t)‖H = ‖ż(t)‖H + ‖f(t)‖H

and (see Proposition 6.5.1)

‖z(t)‖V ≤
∫ t

0

‖ḟ(τ)‖Hdτ, ‖ż(t)‖H ≤
∫ t

0

‖ḟ(τ)‖Hdτ,

which proves (6.43).

6.6 Purely kinetic motion

For some of the arguments below it will be convenient to make use of an orthonormal
basis of the finite dimensional space of rigid motions, M , so that

Pu =
K∑
n=1

(u,mn)Hmn ∀u ∈ H.

Proposition 6.6.1. For any continuous f : [0,∞)→ H, the function

mf (t) :=

∫ t

0

(t− τ)Pf(τ)dτ =
K∑
n=1

(∫ t

0

(t− τ)(f(τ),mn)Hdτ
)
mn, (6.44)

is the unique solution of ü(t) = Au(t) + Pf(t) t ∈ [0,∞),
u(0) = 0,
u̇(0) = 0,

Moreover mf ∈ C2([0,∞);M) (with any norm in the finite dimensional space M).
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Proof. Note that

ṁf (t) =

∫ t

0

Pf(τ)dτ m̈f (t) = Pf(t) = Amf (t) + Pf(t).

Initial conditions are straightforward to verify as well. Note also that since

〈m̈f (t), v〉V ′×V + [mf (t), v] = 〈m̈f (t), v〉V ′×V = (m̈f (t), v)H = (Pf(t), v)H ∀v ∈ V,

then mf is also a weak solution of the equations.

Final remark. For problems ü(t) = Au(t) + f(t) t ∈ [0,∞),
u(0) = 0,
u̇(0) = 0,

with f : [0,∞)→ V or 〈ü(t), v〉V ′×V + [u(t), v] = (f(t), v)H ∀v ∈ V t ∈ [0,∞),
u(0) = 0,
u̇(0) = 0,

with f : [0,∞) → H, we can decompose the solution as the sum of the rigid motion
(6.44), which satisfies

‖mf (t)‖V = ‖mf (t)‖H and ‖Amf (t)‖H = 0

plus the solution of the problem with f(t)− Pf(t) as right hand side. For the bounds of
Propositions 6.4.3 and 6.5.1, note that∫ t

0

‖f(τ)− Pf(τ)‖Hdτ ≤
∫ t

0

‖f(τ)‖Hdτ

and ∫ t

0

‖f(τ)− Pf(τ)‖V dτ =

∫ t

0

|f(τ)|V dτ, |f(τ)|2V = [f(τ), f(τ)].

Also |u(t)|V = |u(t)−mf (t)|V = ‖u(t)−mf (t)‖V .

6.7 Background material

For ease of reference, we are including here some basic results on functional analysis, a
small block thereof related to spectral decompositions of compact operators and a second
group related to uniform convergence of series. Proofs of these results can be found in
any basic text on functional analysis.
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Hilbert-Schmidt theory

We start the section with a slightly restricted version of the Hilbert-Schmidt Theorem for
compact selfadjoint operators in Hilbert space.

Theorem 6.7.1 (Hilbert-Schmidt Decomposition). Let H0 be an infinite dimensional real
Hilbert space. Let G : H0 → H0 be a compact (therefore bounded) self-adjoint and positive
definite (therefore injective) linear operator. Then there exist a non-increasing sequence
of positive numbers limn→∞ λn = 0 and a complete orthogonal set {φn} ⊂ H0 such that

G =
∞∑
n=1

λn( · , φn)φn, (6.45)

with uniform convergence of the series.

Simple consequences plus some remarks.

(a) Uniform convergence of the series refers to convergence in operator norm. Therefore

lim
N→∞

‖G−
N∑
n=1

λn( · , φn)φn‖ = 0.

(b) It is obvious that
Gφn = λnφn

and therefore the decomposition (6.45) singles out eigenvalues and eigenvectors of
G.

(c) Because {φn} is a complete orthonormal set in H0 we can write

u =
∞∑
n=1

(u, φn)φn ∀u ∈ H0. (6.46)

In particular, the hypotheses of the Hilbert-Schmidt theorem, as given here, cannot
hold unless H0 is a separable Hilbert space. A more general result can be easily
shown by assuming that G is only positive semidefinite. In this case, the decompo-
sition (6.45) still holds, but (6.46) only holds in the orthogonal complement of the
kernel of G, a subspace of H0 that can be non-separable.

(d) It can be easily proved that the decomposition (6.45) shows all possible eigenvalues
of G and that eigenfunctions are necessarily linear combinations of those given in
the Hilbert basis.

(e) The reciprocal statement to that of Proposition 6.7.1 is easy to prove: if there exist
sequences {λn} and {φn} in the conditions above (λn > 0, limn→∞ λ = 0, {φn}
complete orthonormal in H0), then the operator G is a compact selfadjoint positive
definite linear operator in H0.
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Picard’s criterion goes one step further to characterize the range of an operator of the
form (6.45) with the conditions above for the eigenvalues and eigenvectors.

Theorem 6.7.2 (Picard’s Criterion). Let G : H0 → H0 be an operator in the conditions of
Proposition 6.7.1 and consider its Hilbert-Schmidt decomposition (6.45). Then f ∈ R(G)
if and only if

∞∑
n=1

λ−2
n |(f, φn)|2 <∞. (6.47)

More remarks and observations.

(a) Picard’s criterion is actually proved by finding the inverse, which is actually a rather
simple thing to do:

R(G) 3 f 7−→ u :=
∞∑
n=1

λ−1
n (f, φn)φn.

It is clear that this is an element of H0 and that Gu = f .

(b) The condition (6.47) can actually be used to endow R(G) with a norm:

‖f‖2
R(G) :=

∞∑
n=1

λ−2
n |(f, φn)|2

This norm makes R(G) a Hilbert that is compact and densely embedded in H.
Furthermore, R : H → R(G) is an isometric isomorphism.

Some continuity tests

Lemma 6.7.3. Let X be a Hilbert space and I a closed interval in R. Assume that
cn : I → X are continuous functions such that

(cn(t), cm(t))X = 0 ∀n 6= m ∀t ∈ I

and

‖cn(t)‖2
X ≤Mn ∀t ∈ I where

∞∑
n=1

Mn <∞.

Then the series
∞∑
n=1

cn(t)

converges uniformly to a function in C(I;X).

Proof. Consider the partial sums

sN :=
N∑
n=1

cn ∈ C(I;X)
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and note that for M > N

‖sM(t)− sN(t)‖2
X =

∥∥∥ M∑
n=N+1

cn(t)
∥∥∥2

X
=

M∑
n=N+1

‖cn(t)‖2
X <

M∑
n=N+1

Mn ∀t ∈ I.

This proves that sN is Cauchy in C(I;X) and therefore, it is convergent in this space.

A second variant of this result includes term by term differentiation. The proof is
similar.

Lemma 6.7.4. Let X be a Hilbert space and I a closed interval in R. Assume that
cn ∈ C1(I;X) satisfy

(cn(t), cm(τ))X = 0 ∀n 6= m ∀t, τ ∈ I,
and

‖cn(t)‖2
X + ‖ċn(t)‖2

X ≤Mn ∀t ∈ I where
∞∑
n=1

Mn <∞.

Then the series
∞∑
n=1

cn(t) and
∞∑
n=1

ċn(t)

converge in C(I;X) and the derivative of the first function is the second one.

Proof. The hypothesis of orthogonality for all values of t, τ implies that

(ċn(t), ċm(t))X = 0 ∀n 6= m ∀t ∈ I.
Using the notation of the proof of Lemma 6.7.3, we thus prove that for M > N

‖sM(t)− sN(t)‖2
X + ‖ṡM(t)− ṡN(t)‖2

X ≤
M∑

n=N+1

Mn ∀t ∈ I,

from where the result follows.

Lemma 6.7.5. Let f : I → X be continuous and I is a closed bounded interval. Assume
that X has a Hilbert basis {φn}. Then, the series

f(t) =
∞∑
n=1

(f(t), φn)Xφn (6.48)

converges in C(I;X).

Proof. It is clear that the series (6.48) converges in X for all t and in particular

aN(t) :=
∥∥∥ N∑
n=1

(f(t), φn)Xφn

∥∥∥2

X
=

N∑
n=1

|(f(t), φn)X |2
N→∞−→

∞∑
n=1

|(f(t), φn)X |2 = ‖f(t)‖2
X

for all t. The functions aN : I → R are continuous and increase monotonically to its
continuous limit a(t) := ‖f(t)‖2

X . By Dini’s Theorem, aN → a uniformly. Finally∥∥∥f(t)−
∞∑
n=1

(f(t), φn)Xφn

∥∥∥2

X
= a(t)− aN(t) ∀t ∈ I, ∀N,

which proves the result.
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6.8 Exercises

1. (Section 6.2) Consider the spaces

H := L2(0, L), V := H1
0 (0, L), D(A) := H1

0 (0, L) ∩H2(0, L).

Describe the spaces (and their associated norms) using Fourier sines series. Note
that the Fourier sine series is the series of eigenfunctions for the one dimensional
problem

−u′′ = f in (0, L), u(0) = u(L) = 0

Follow carefully where the constant of Poincaré’s inequality appears.

2. (Section 6.2) Describe the spaces (and their norms)

H := L2(0, L), V := H1(0, L), D(A) := {u ∈ H2(0, L) : u′(0) = u′(L) = 0}

using Fourier cosine series. Note that the Fourier cosine series is the series of eigen-
functions for the one dimensional problem

−u′′ = f in (0, L), u′(0) = u′(L) = 0

and that there is a one-dimensional space of rigid motions.

3. (Section 6.2) Study the Green’s operator associated to the problem with periodic
boundary conditions

−u′′ = f in (0, L), u(0) = u(L), u′(0) = u′(L).

4. (Section 6.2) Associated Hilbert scales. In the notation of Section 6.2, for s ≥ 0
we consider the space

Hs := {u ∈ H0 : ‖u‖s <∞}, where ‖u‖2
s :=

∞∑
n=1

λ−sn |(u, φn)H |2.

Note that H1 = V0 = R(G1/2) and H2 = D(A) ∩ H0 = R(G). Note also that by
Picard’s Criterion Hs = R(Gs/2), where

Gs/2u :=
∞∑
n=1

λ−s/2n (u, φn)Hφn.

(a) Show that Hs si a Hilbert space. (Hint. You can easily show Hs to be isomor-
phic to a space of sequences with a weighted `2 norm.)

(b) Find the best estimate for C(r, s) > 0 such that

‖u‖s ≤ C(r, s)‖u‖r ∀u ∈ Hr r ≥ s.

(c) Show that if r > s, then the inclusion Hr ⊂ Hs is dense and compact.
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(d) Show that G : Hs → Hs+2 and A : Hs+2 → Hs are bounded for all s ≥ 0.

5. (Section 6.3) The evolution group. Using notation of Section 6.3, consider the
matrix of operators

S(t) :=

[
S11(t) S12(t)
S21(t) S22(t)

]
,

where

S11(t)u := Pu+
∞∑
n=1

cos(ξnt)(u, φn)Hφn,

S12(t)v := t Pv +
∞∑
n=1

ξ−1
n sin(ξnt)(v, φn)Hφn,

S21(t)u := −
∞∑
n=1

ξn sin(ξnt)(u, φn)Hφn,

S22(t)v := Pv +
∞∑
n=1

cos(ξnt)(v, φn)Hφn.

These operators are defined for all t ∈ R. Note that, at least formally, the second
row of S(t) is the derivative of the first one.

(a) Show that S(t) defines a bounded operator V ×H → V ×H.

(b) Show that S(t) is an isometry in V × H for all t ∈ R and that S(0) is the
identity operator.

(c) Show that S(t)S(τ) = S(t + τ) for all t, τ ∈ R. (Hint. This can be proved on
a dense subspace.)

(d) Show that S(−t) = S(t)−1. (Hint. This is an easy consequence of the above.)

(e) Show that S(t) is also bounded D(A)× V → D(A)× V .

6. (Section 6.4) Prove all the bounds of Proposition 6.4.3.
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Chapter 7

Time domain analysis of the single
layer potential

In this chapter we are going to develop a systematic approach to a purely time domain
analysis of the single layer potential and operator, the Galerkin semidiscrete error opera-
tors and the Galerkin solvers, namely, we want to prove estimates of

S ∗ λ, V ∗ λ, Kt ∗ λ,

of its semidiscrete inverses

Ghλ ∗ β, Ghu ∗ β = S ∗ Ghλ ∗ β

and of the error operators

Ehλ ∗ λ = Ghλ ∗ V ∗ λ− λ, Ehu ∗ λ = S ∗ Ehλ ∗ λ.

The analysis of the semidiscrete operators will be developed in the usual ‘for all h’ spirit
of Chapter 5, meaning that we will look for bounds independent of the discrete space
Xh ⊂ H−1/2(Γ). We will only use that the space Xh is closed. Given the fact that when
Xh = H−1/2(Γ), Ghλ = V−1, as a byproduct we will obtain an analysis of the operators
V−1 ∗ β and S ∗ V−1 ∗ β.

7.1 The cut-off process

Much of the technical effort of this chapter is related on the way of fitting transmission
problems for the wave equation in the frame of the second order problems of Chapter
6. We are going to use finite speed of propagation of waves generated by potentials to
cut-off the domain at a given distance from the scatterer. In this way, the potentials will
coincide with the solution of wave propagation problems in bounded domains in a time
interval [0, T ]. Taking larger values of T , and following carefully all constants depending
on the cut-off domain, we will be able to provide a full analysis for all times.
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The cut-off geometry. Let R > 0 be such that

Ω− ⊂ B(0;R) = {y ∈ Rd : |y| < R} =: B0

and let
BT := B(0;R + T ).

Consider also the distance of the boundary of B0 to Γ:

δ := dist(∂B0,Γ) := min{|x− y| : x ∈ Γ, |y| = R} > 0.

The trace operator and normal derivative operators on ∂BT will have their own notation,
making T explicit

γT : H1(BT \ Ω−)→ H1/2(∂BT ),

∂νT : H1
∆(BT \ Ω−)→ H−1/2(∂BT ).

Proposition 7.1.1 (Finite speed of propagation of potentials). Let λ ∈ TD(H−1/2(Γ)),
ϕ ∈ TD(H1/2(Γ) and u := S ∗ λ+D ∗ ϕ. Then

supp γTu ⊂ [T + δ,∞) supp ∂νTu ⊂ [T + δ,∞).

Proof. Note that γTu ∈ TD(H1/2(∂BT )) and ∂νTu ∈ TD(H−1/2(∂BT )). The result follows
from the causality analysis of Section 3.6, in particular from Proposition 3.6.2.

Some inequalities. It will be convenient to keep track of several constants related to
classical inequalities.

(a) The Poincaré-Friedrichs inequality in BT :

‖v‖BT ≤ CT‖∇v‖BT ∀v ∈ H1
0 (BT ). (7.1)

Note that we can take
CT = C0(1 + T/R). (7.2)

(b) Boundedness of the trace operators:

‖γ±u‖1/2,Γ ≤ Cγ‖u‖1,B0\Γ ∀u ∈ H1(B0 \ Γ).

(c) Boundedness of the normal derivative operator:

‖∂±ν u‖−1/2,Γ ≤ Cν

(
‖∇u‖2

B0∩Ω± + ‖∆u‖2
B0∩Ω±

)1/2

∀u ∈ H1
∆(B0 \ Γ). (7.3)

(d) A fixed two sided lifting of the trace. We consider an operator γ† : H1/2(Γ) →
H1

0 (B0) and a constant C†γ > 0 such that

γγ†β = β, ‖γ†β‖1,B0 ≤ C†γ‖β‖1/2,Γ ∀β ∈ H1/2(Γ). (7.4)

The space
XT := H1

0 (BT ) ∩H1
∆(BT \ Γ),

endowed with the norm
‖u‖2

XT := ‖∇u‖2
BT

+ ‖∆u‖BT \Γ,
will play a prominent role in all what follows.
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The general plan. Following a several step process which mimicks in the time domain
what we did in the Laplace domain (Sections 5.3 and 5.4), we will work in a systematic
way.

• Recognize the transmission problem for the wave equation that we want to analyze.
Cut then off the domain with the boundary ∂BT and impose a Dirichlet boundary
condition.

• Identify the underlying dynamical system frame D(A) ⊂ V ⊂ H and check all
needed properties to fit in the frame of Chapter 6 (see below). Transmission condi-
tions that appear in the definition of V will be called essential, while those that are
imposed in the definition of D(A) will be called natural.

• Find a lifting process related to the non-homogeneous transmission conditions.

• Prove existence of strong solutions to the wave propagation problem in bounded
domain.

– When transmission conditions are natural this will be doable in a single step
(using strong solutions of non-homogeneous second order equations after lifting
the boundary condition).

– When transmission conditions are essential, the lifting will lead to a weak
solutions of a non-homogeneous second order equation, and a correction step
(using higher data regularity) will then be applied to obtain bounds for all
desired quantities.

• Show finite speed of propagation for the strong solution of the wave propagation
problem in bounded domain. This will be phrased as a waiting time property.

• Identify potentials and strong solutions in the interval [0, T ] and use the previous
bounds to estimate the potentials at time t = T .

• Finally use density arguments and the convolutional character of potentials to refine
the continuity requirements of data. In the three cases studied in this section, this
part will be collected in the final section.

The dynamical system framework (a checklist). In all examples below, we will
need to identify the spaces

D(A) ⊂ V ⊂ H,

and their norms and inner products. (There will not be rigid motions here.) Recall that,
in absence of rigid mitions, we denote by [ · , · ] the inner product of V . We also have
to define the operator A, which will be implicit to the definition of D(A). The checklist
consists then of the following points:

• Verify that the injection V ⊂ H is compact and dense.
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• Find the constant related to the (generalized Poincaré) inequality

‖u‖H ≤ C◦‖u‖V ∀u ∈ V.

• Verify the associated Green identity:

[u, v] + (Au, v)H = 0 ∀u ∈ D(A), v ∈ V.

• Verify the surjectivity of I − A, i.e., given f ∈ H find

u ∈ D(A) such that − Au+ u = f.

A word on causal functions and [0,∞). The dynamical system approach will work
with data [0,∞)→ X. In particular we will use the spaces

Ck0 ([0,∞);X) := {u ∈ Ck([0,∞);X) : u(`)(0) = 0 ` ≤ k − 1}.

Tempered or polynomial behavior at infinity will be often assumed to simplify arguments
(mainly to have Laplace transforms or to be in the time-domain class TD(X).) However,
given the fact that all operators involved in this analysis are causal convolution operators,
the behavior of data functions at infinity will not be relevant. Unlike what we did in
Chapter 2 (when we were still trying to distinguish derivatives), the dot symbol will be
used for strong classical differentiation of functions [0,∞) → X and for distributional
differentiation of X-valued causal distributions.

Extension by zero to negative values of the time variable will be done using the fol-
lowing notation

u ∈ C([0,∞);X) 7−→ Eu(t) :=

{
u(t), t ≥ 0,
0, t < 0.

For ease of reference we now gather some simple properties of the extension operator E.

Lemma 7.1.2. Let u ∈ C([0,∞);X).

(a) Eu is a causal X-valued distribution.

(b) If ‖u(t)‖ ≤ Ctm for all t ≥ 1 with some positive m, then Eu ∈ TD(X).

(c) If A ∈ B(X, Y ), then
AEu = EAu,

where EAu is the extension of the continuous function Au : [0,∞) → Y to an
Y -valued distribution.

(d) If u ∈ C1([0,∞);X), then

d
dt

(Eu) = Eu̇+ δ0 ⊗ u(0).

In particular, if u ∈ C1
0([0,∞);X), then

d
dt

(Eu) = Eu̇.
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7.2 Potentials and operators

In order to study u = S ∗ λ, its trace V ∗ λ = γ(S ∗ λ) and the average of its normal
derivatives Kt ∗ λ = {{∂ν(S ∗ λ)}}, we consider the following cut-off problem: we look for
uT : [0,∞)→ H1(BT ) ∩H1

∆(BT \ Γ) satisfying

üT (t) = ∆uT (t) ∀t ≥ 0, (7.5a)

γTuT (t) = 0 ∀t ≥ 0, (7.5b)

[[∂νuT ]](t) = λ(t) ∀t ≥ 0, (7.5c)

uT (0) = u̇T (0) = 0. (7.5d)

The Laplace operator in (7.5a) is in the sense of distributions in BT \ Γ and this equality
holds in the space L2(BT ) ≡ L2(BT \ Γ). The equation (7.5b) is imposed in H1/2(∂BT )
and will be substituted by the implicit demand that

uT : [0,∞)→ XT = H1
0 (BT ) ∩H1

∆(BT \ Γ).

The jump condition (7.5c) will be imposed in H−1/2(Γ).

The dynamical system framework. Consider the spaces

H := L2(BT ),

V := H1
0 (BT ),

D(A) := H1
0 (BT ) ∩H2(BT ) = H1

0 (BT ) ∩H1
∆(BT )

= {u ∈ V : ∆u ∈ L2(BT \ Γ), [[∂νu]] = 0},

with
‖u‖H := ‖u‖BT , [u, v] := (∇u,∇v)BT

and where A is the distributional Laplacian in BT \Γ. Note that since functions in D(A)
do not have jumps for the trace and normal derivative across Γ, we can equally take A to
be the Laplace operator in BT . We now proceed with the checklist:

• Since D(BT ) ⊂ V , the density of V in H follows. Compactness of the inclusion
follows from Rellich’s Compactness Theorem.

• The generalized Poincaré inequality is just the Poincaré inequality (7.1) and there-
fore C◦ = CT .

• The associated Green identity is just Green’s Identity

(∇u,∇v)BT + (∆u, v)BT = 0 ∀u ∈ D(A) ⊂ H1
∆(BT ) ∀v ∈ V = H1

0 (BT ).

• Given f ∈ H = L2(BT ) we can easily find u ∈ H1(BT ) satisfying

−∆u+ u = f in BT γTu = 0.

Therefore u ∈ D(A) and −Au+ u = f .
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The lifting operator. Consider the operator L : H−1/2(Γ) → V = H1
0 (BT ) given by

the solution of the variational problem[
u0 ∈ H1

0 (BT ),
(∇u0,∇v)BT + (u0, v)BT = 〈λ, γv〉Γ ∀v ∈ H1

0 (BT ),

or equivalently, the transmission problem

u0 ∈ H1
0 (BT ),

−∆u0 + u0 = 0 in BT \ Γ,

[[∂νu0]] = λ.

(Note that the boundary condition γTu0 = 0 is implicit in the fact that u0 ∈ H1
0 (BT ).)

Since we can easily bound

‖u0‖XT = ‖u0‖1,BT ≤ Cγ‖λ‖−1/2,Γ

it follows that

‖L‖H−1/2(Γ)→Z ≤ Cγ where Z ∈ {H,V,H1(BT ),XT}. (7.6)

Proposition 7.2.1 (Strong solutions in bounded domain). Let λ ∈ C2
0([0,∞);H−1/2(Γ)).

Then, there exists (a unique)

uT : [0,∞)→ XT = H1
0 (BT ) ∩H1

∆(BT \ Γ),

satisfying

üT (t) = ∆uT (t) ∀t ≥ 0, (7.7a)

[[∂νuT ]](t) = λ(t), ∀t ≥ 0, (7.7b)

uT (0) = u̇T (0) = 0, (7.7c)

with regularity

uT ∈ C2([0,∞);L2(BT )) ∩ C1([0,∞);H1
0 (BT )) ∩ C([0,∞);XT ). (7.8)

Moreover, for all t ≥ 0,

‖∇uT (t)‖BT ≤ Cγ
(
‖λ(t)‖−1/2,Γ +B(λ, t)

)
, (7.9a)

‖∆uT (t)‖BT \Γ ≤ Cγ
(
‖λ(t)‖−1/2,Γ +B(λ, t)

)
, (7.9b)

‖uT (t)‖1,BT ≤ Cγ
(
‖λ(t)‖−1/2,Γ + c(T )B(λ, t)

)
, (7.9c)

‖u̇T (t)‖1,BT ≤ Cγ
(
‖λ̇(t)‖−1/2,Γ +

√
2B(λ, t)

)
, (7.9d)

‖{{∂νuT}}(t)‖−1/2,Γ ≤
√

2CγCν
(
‖λ(t)‖−1/2,Γ +B(λ, t)

)
, (7.9e)

where

c(T ) :=
√

1 + C2
T and B(λ, t) :=

∫ t

0

‖λ(τ)− λ̈(τ)‖−1/2,Γdτ.
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Proof. Lifting and decomposition. Consider the functions

u0(t) := Lλ(t) f(t) := L(λ(t)− λ̈(t)) = u0(t)− ü0(t)

and note that f : [0,∞) → V is continuous and that u0 ∈ C2
0([0,∞);XT ) by (7.6). Also

by (7.6), it follows that∫ t

0

‖f(τ)‖BT dτ ≤ CγB(λ, t) and

∫ t

0

‖∇f(τ)‖BT dτ ≤ CγB(λ, t). (7.10)

The key now is to work with the equation satisfied by v0 = uT − u0. Thus, we look for
v0 : [0,∞)→ D(A) such that

v̈0(t) = Av0(t) + f(t) ∀t ≥ 0, v0(0) = v̇0(0) = 0. (7.11)

By Proposition 6.4.2, equation (7.11) has a solution

v0 ∈ C2([0,∞);L2(BT )) ∩ C1([0,∞);H1
0 (BT )) ∩ C([0,∞);H1

∆(BT )). (7.12)

Moreover, by Proposition 6.4.3 and (7.10), we can bound

C−1
T ‖v0(t)‖BT ≤ ‖∇v0(t)‖BT ≤ CγB(λ, t), (7.13a)

‖∇v̇0(t)‖BT ≤ CγB(λ, t), (7.13b)

‖v̇0(t)‖BT ≤ CγB(λ, t), (7.13c)

‖∆v0(t)‖BT ≤ CγB(λ, t). (7.13d)

Recomposition. Consider now the function uT (t) := u0(t)+v0(t). Note that uT takes values
in XT for all t and that uT satisfies (7.8) by (7.12) and the fact that u0 ∈ C2([0,∞);XT ).
Also, notice that u0(t) = ∆u0(t) for all t (see the definition of the lifting) and therefore

üT (t) = ü0(t) + v̈0(t)

= ü0(t)− u0(t) + ∆u0(t) + ∆v0(t) + f(t)

= ∆(u0(t) + v0(t)) + ü0(t)− u0(t) + u0(t)− ü0(t) = ∆uT (t), ∀t ≥ 0.

Finally,
[[∂νuT ]](t) = [[∂νu0]](t) = λ(t) ∀t ≥ 0

and

uT (0) = u0(0) + v0(0) = Lλ(0) = 0 u̇T (0) = u̇0(0) + v̇0(0) = Lλ̇(0) = 0.

This proves that uT : [0,∞)→ XT satisfies the problem (7.7). (Uniqueness of solution of
this problem follows from uniqueness for the associated initial value problem, which was
proved in Proposition 6.3.2 in the abstract frame of Chapter 6.)

Bounds. The bounds for uT follows from those for v0(t), i.e. (7.13), from the bound-
edness properties of the lifting L (7.6) and from the fact that

‖{{∂νuT}}(t)‖1/2,Γ ≤ Cν‖uT (t)‖XT

(see (7.3)).

113



Proposition 7.2.2 (Waiting Time on ∂BT ). Let uT : [0,∞) → XT be the solution of
(7.7) for λ ∈ C2

0([0,∞);H−1/2(Γ)). Then

∂νTuT (t) = 0 0 ≤ t ≤ T + δ.

Proof. A simple uniqueness argument shows that the value of λ(t) for t > T + δ is not
relevant. We thus assume that λ is polynomially bounded at infinity, so that Eλ ∈
TD(H−1/2(Γ)) by Lemma 7.1.2.

By Lemma 7.1.2, EuT is an XT -valued causal distribution satisfying

d2

dt2
(EuT ) = EüT = E∆uT = ∆EuT

and
[[∂νEuT ]] = E[[∂νuT ]] = Eλ.

These equations hold in the sense of L2(BT \ Γ) and H−1/2(Γ)-valued distributions re-
spectively. Moreover, the bounds of Proposition 7.2.1 show that uT grows polynomially
in the XT norm and therefore EuT ∈ TD(XT ).

Consider now the distributions

w := EuT − (S ∗ Eλ)|BT and ξ := γTw = −γT (S ∗ Eλ).

Note that w is a causal solution of the problem

w ∈ TD(H1(BT ) ∩H1
∆(BT \ Γ)), ẅ = ∆w, [[∂νw]] = 0, γTw = ξ.

(The condition [[γw]] = 0 is implicit in the space H1(BT )∩H1
∆(BT \Γ).) We can now use

a Laplace transform argument (see exercises) to show that

w =M∗ ξ where M∈ TD(B(H1/2(∂BT ), H1(BT ) ∩H1
∆(BT \ Γ)).

By finite speed of propagation of potentials (Proposition 7.1.1), it follows that supp ξ ⊂
[T+δ,∞), but then, preservation of causality of causal convolution operators (Proposition
3.2.1) proves that suppw ⊂ [T + δ,∞). This shows that

supp ∂νTw ⊂ [T + δ,∞),

which combined with the fact that supp ∂νT (S ∗ Eλ) ⊂ [T + δ,∞) (again by Proposition
7.1.1), implies that

supp ∂νTEuT ⊂ [T + δ,∞). (7.14)

However, ∂νTuT : [0,∞) → H−1/2(∂BT ) is a continuous function (uT is a continuous XT -
valued function and ∂νT : XT → H−1/2(∂BT ) is bounded), and thus (7.14) implies the
result.

Proposition 7.2.3 (Extension to free space). Let λ ∈ C2
0([0,∞);H−1/2(Γ)) and uT be

the solution of (7.7). Consider the extension

uT : [0,∞)→ H1
∆(Rd \ (Γ ∪ ∂BT ))
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given by
uT (t)|BT = uT (t) and uT (t)|Rd\BT ≡ 0.

Then uT : [0, T + δ]→ H1
∆(Rd \ Γ) is continuous and

uT (t) = (S ∗ Eλ)(t) 0 ≤ t < T + δ. (7.15)

Proof. It is clear that uT : [0,∞)→ H1(Rd)∩H1
∆(Rd \ (Γ∪ ∂BT )) is continuous and that

uT satisfies the equations:

üT (t) = ∆uT (t) ∀t ≥ 0, (7.16a)

[[∂νuT ]](t) = λ(t) ∀t ≥ 0, (7.16b)

[[∂νTuT ]](t) = ∂νTuT (t) ∀t ≥ 0, (7.16c)

uT (0) = u̇T (0) = 0. (7.16d)

The Laplace operator in (7.16a) is the distributional Laplacian in Rd \ (Γ∪∂BT ), and the
jump operator in (7.16c) corresponds to the jump of normal derivative across ∂BT . By
Lemma 7.1.2 (see the argument in the proof of Proposition 7.2.2), the extension EuT is a
causal solution of the wave equation

EuT ∈ TD(H1
∆(Rd \ (Γ ∪ ∂BT )) d2

dt2
(EuT ) = ∆EuT

and therefore, by Kirchhoff’s formula (Proposition 3.5.1), we can represent

EuT = S ∗ [[∂νEuT ]] + S∂BT ∗ [[∂νTEuT ]] = S ∗ Eλ+ S∂BT ∗ E∂νTuT ,

where S∂BT is the distribution that defines the single layer operator stemming from the
boundary ∂BT . By Proposition 7.2.2 and causality of (causal) convolution operators, it
follows that

supp (EuT − S ∗ Eλ) = supp (S∂BT ∗ ∂νTuT ) ⊂ [T + δ,∞).

This proves (7.15). Finally,

H1(Rd) ∩H1
∆(Rd \ Γ) = {u ∈ H1(Rd) ∩H1

∆(Rd \ (Γ ∪ ∂BT )) : [[∂νTu]] = 0}

and the different Laplace operators in these two sets (Laplacian in Rd \ Γ and in Rd \
(Γ ∪ ∂BT ) respectively) coincide. The fact that uT satisfies the equations (7.16) and
Proposition 7.2.2 prove then that uT (t) ∈ H1(Rd)∩H1

∆(Rd \Γ) for all t ≤ T + δ and that
∆uT (t) = ∆uT (t) for t ≤ T + δ.

The results so far. Let us now start with λ ∈ TD(H−1/2(Γ)) such that the restriction
λ|(0,∞) is in C2

0([0,∞);H−1/2(Γ)). In order to observe all potentials and operators at time
t = T we use Proposition 7.2.3 with the cut-off at T , and evaluate all functions at t = T .
We then use the bounds of Proposition 7.2.1 to obtain:

‖∇(S ∗ λ)(T )‖Rd = ‖∇uT (T )‖Rd (Proposition 7.2.3)

= ‖∇uT (T )‖BT (definition of uT )

≤ Cγ(‖λ(T )‖−1/2,Γ +B(λ, T )
)
. (Proposition 7.2.1)
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Similarly

‖(V ∗ λ)(T )‖1/2,Γ ≤ Cγ‖(S ∗ λ)(T )‖1,Rd (trace operator)

= Cγ‖uT (T )‖1,BT (Proposition 7.2.3)

≤ C2
γ(‖λ(T )‖−1/2,Γ + c(T )B(λ, T )

)
, (Proposition 7.2.1)

and

‖(Kt ∗ λ)(T )‖−1/2,Γ = ‖[[∂νuT ]](T )‖−1/2,Γ (Proposition 7.2.3)

≤
√

2CνCγ(‖λ(T )‖−1/2,Γ +B(λ, T )
)
. (Proposition 7.2.1)

Using the regularity part of Proposition 7.2.1 and the identification of the potential S ∗λ
with the extensions uT , it is also clear that we have proved that

S ∗ λ ∈ C2(R;L2(Rd)) ∩ C1(R;H1(Rd)) ∩ C(R;H1
∆(Rd \ Γ)) (7.17)

and therefore
V ∗ λ ∈ C1(R;H1/2(Γ))

and
Kt ∗ λ ∈ C(R;H−1/2(Γ)).

Note that (7.17) includes the information about the fact that üT (0) = ∆uT (0) = 0, which
allows us to show that the potential is actually in the spaces that appear in (7.17).

Concluding remark. We will come back to these conclusions in Section 7.5, where we
will use some density and shift arguments to reduce the continuity requirements on the
side of the density λ. We will also get rid of the quantity c(T ) by changing the way we
accumulate information from the data function λ.

7.3 The Galerkin error operator

Recall that the Galerkin (semidiscrete) equations, seen as an approximation process, look
for a causal Xh-valued density λh such that

〈µh,V ∗ (λh − λ)〉Γ = 0 ∀µh ∈ Xh (7.18)

and then build uh = S ∗ λh. The error operators map λ to

Ehλ ∗ λ = λh − λ and Ehu ∗ λ = uh − u = S ∗ Ehλ ∗ λ.

These operators have been studied in the Laplace domain in Section 5.4. As in that
section, the analysis is carried out through the potential component (λ 7→ Ehu ∗ λ) and
then conclusions are drawn using the fact that Ehλ ∗λ = [[∂ν(Ehu ∗λ)]]. Note that εu := Ehu ∗λ
can be characterized by the uniquely solvable problem

εu ∈ TD(H1(Rd) ∩H1
∆(Rd \ Γ)), ε̈u = ∆εu, γεu ∈ X◦h, [[∂νεu]] + λ ∈ Xh.
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We cut off with a boundary ∂BT and look for εT : [0,∞) → H1(BT ) ∩ H1
∆(BT \ Γ)

satisfying

ε̈T (t) = ∆εT (t) ∀t ≥ 0, (7.19a)

γT εT (t) = 0 ∀t ≥ 0, (7.19b)

γεT (t) ∈ X◦h ∀t ≥ 0, (7.19c)

[[∂νεT ]](t) + λ(t) ∈ Xh ∀t ≥ 0, (7.19d)

εT (0) = ε̇T (0) = 0. (7.19e)

The first condition on Γ, (7.19c), encodes the discrete Galerkin equation (7.18) from the
point of view of uh−u. At the same time, (7.19d) is used to impose that the semidiscrete
unknown in (7.18) takes values in Xh. As we did in (7.5), the boundary condition on ∂BT

will be directly imposed in the space, by considering

εT : [0,∞)→ XT = H1
0 (BT ) ∩H1

∆(BT \ Γ).

The associated dynamical system. The spaces for the second order equations are
suggested by the transmission and boundary conditionsin (7.19). We thus define

H := L2(BT ),

V := {u ∈ H1
0 (BT ) : γu ∈ X◦h},

D(A) := {u ∈ V : ∆u ∈ L2(BT \ Γ), [[∂νu]] ∈ Xh},

with
‖u‖H := ‖u‖BT , [u, v] := (∇u,∇v)BT .

We take A to be the distributional Laplacian in BT \ Γ. Note that if u ∈ H1
∆(BT \ Γ),

then

[[∂νu]] ∈ Xh ⇐⇒ (∇u,∇v)BT \Γ + (∆u, v)BT \Γ = 0 ∀v ∈ V. (7.20)

We now verify all the hypotheses in our checklist:

• The fact that D(BT \ Γ) ⊂ V ⊂ H1(BT ) ⊂ H implies the density and the compact-
ness of the embedding of V in H.

• The constant to relate the norms of H and V is the one of the Poincaré inequality
(7.1) and thus C◦ = CT , with CT given by (7.1).

• The Green Idendity is just another way of phrasing (7.20).

• Finally, if f ∈ H = L2(BT ), we can solve the coercive problem[
u ∈ V,
(∇u,∇v)BT + (u, v)BT = (f, v)BT ∀v ∈ V,

and then verify that −∆u+u = f in BT \Γ (test with a general element of D(BT \Γ))
and then

(∇u,∇v)BT + (∆u, v)BT \Γ = (∇u,∇v)BT + (u, v)BT − (f, v)BT = 0 ∀v ∈ V,

which proves that u ∈ D(A).
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The lifting. We now define L : H−1/2(Γ)→ V through the solution of the problem[
u0 ∈ V,

(∇u0,∇v)BT + (u0, v)BT = 〈λ, γv〉Γ ∀v ∈ V,
(7.21)

which is the variational formulation of

u0 ∈ H1
0 (BT ), (7.22a)

−∆u0 + u0 = 0 in BT \ Γ, (7.22b)

γu0 ∈ X◦h, (7.22c)

[[∂νu0]]− λ ∈ Xh. (7.22d)

Testing equations (7.21) with v = u0 we can bound

‖u0‖XT = ‖u0‖1,BT ≤ Cγ‖λ‖−1/2,Γ

which yields the estimates

‖L‖H−1/2(Γ)→Z ≤ Cγ where Z ∈ {H,V,H1(BT ),XT}. (7.23)

Proposition 7.3.1 (Strong solutions in bounded domain). Let λ ∈ C2
0([0,∞);H−1/2(Γ)).

Then, there exists (a unique)

εT : [0,∞)→ XT = H1
0 (BT ) ∩H1

∆(BT \ Γ),

satisfying

ε̈T (t) = ∆εT (t) ∀t ≥ 0, (7.24a)

γεT (t) ∈ X◦h ∀t ≥ 0, (7.24b)

[[∂νεT ]](t) + λ(t) ∈ Xh ∀t ≥ 0, (7.24c)

εT (0) = ε̇T (0) = 0, (7.24d)

with regularity

εT ∈ C2([0,∞);L2(BT )) ∩ C1([0,∞);H1
0 (BT )) ∩ C([0,∞);XT ). (7.25)

Moreover, for all t ≥ 0,

‖∇εT (t)‖BT ≤ Cγ
(
‖λ(t)‖−1/2,Γ +B(λ, t)

)
, (7.26a)

‖∆εT (t)‖BT \Γ ≤ Cγ
(
‖λ(t)‖−1/2,Γ +B(λ, t)

)
, (7.26b)

‖εT (t)‖1,BT ≤ Cγ
(
‖λ(t)‖−1/2,Γ + c(T )B(λ, t)

)
, (7.26c)

‖ε̇T (t)‖1,BT ≤ Cγ
(
‖λ̇(t)‖−1/2,Γ +

√
2B(λ, t)

)
, (7.26d)

‖[[∂νεT ]](t)‖−1/2,Γ ≤
√

2CγCν
(
‖λ(t)‖−1/2,Γ +B(λ, t)

)
, (7.26e)

where

c(T ) :=
√

1 + C2
T and B(λ, t) :=

∫ t

0

‖λ(τ)− λ̈(τ)‖−1/2,Γdτ.
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Proof. The proof is very similar to that of Proposition 7.2.1. We start by defining

u0(t) := −Lλ(t), f(t) := u0(t)− ü0(t) = L(λ̈(t)− λ(t)),

consider then the solution v0 : [0,∞)→ D(A) of the problem

v̈0(t) = Av0(t) + f(t) ∀t ≥ 0, v0(0) = v̇0(0) = 0, (7.27)

and finally propose εT := u0 + v0. The key facts are the continuity of f : [0,∞) → V
(which means that (7.27) has strong solutions in the sense of Section 6.4) and the equality
∆u0(t) = u0(t) for all t.

Since Lλ(t) ∈ V and v0(t) ∈ D(A) ⊂ V for all t ≥ 0, it is clear that εT (t) ∈ V for all
t. To verify the other transmission condition note that

[[∂νεT ]](t) + λ(t) = −[[∂νLλ(t)]] + λ(t)︸ ︷︷ ︸
(see (7.22))

+ [[∂νv0(t)]]︸ ︷︷ ︸
(v0(t)∈D(A))

∈ Xh.

With this we show that εT satisfies equations (7.24). Using the fact that u0 ∈ C2([0,∞);XT )
and Proposition 6.4.2 we can prove the desired regularity (7.25).

We can finally use Proposition 6.4.3 to bound v0 in terms of f , as well as (7.23) to
bound f in terms of λ. This leads to the estimates

C−1
T ‖v0(t)‖BT ≤ ‖∇v0(t)‖BT ≤ CγB(λ, t),

‖∇v̇0(t)‖BT ≤ CγB(λ, t),

‖v̇0(t)‖BT ≤ CγB(λ, t),

‖∆v0(t)‖BT \Γ ≤ CγB(λ, t).

Finally, (7.23) is used again to bound u0 and this finishes the proof.

Proposition 7.3.2 (Waiting Time on ∂BT ). Let εT : [0,∞) → XT be the solution of
(7.24) for λ ∈ C2

0([0,∞);H−1/2(Γ)). Then

∂νT εT (t) = 0 ∀t ≤ T + δ.

Proof. We can restrict our attention to densities λ with polynomial growth in the time
variable, which imples that εT has also polynomial growth (see the bounds in Proposition
7.3.1). We then define the continuous function [[∂νεT ]] : [0,∞)→ H−1/2(Γ). What is left
of the proof consists of a straightforward adaption of the proof of Proposition 7.2.2 in
order to first show that

supp
(
EεT − (S ∗ E[[∂νεT ]])|BT

)
⊂ [T + δ,∞)

via a causality argument and then by finite speed of propagation of potentials (Proposition
7.1.1), and to prove then that

supp ∂νTEεT ⊂ [T + δ,∞).

Details are left to the reader.
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Proposition 7.3.3 (Recovery of the density). Let εT : [0,∞) → XT be the solution of
(7.24) for λ ∈ C2

0([0,∞);H−1/2(Γ)). Consider the function

ελ : [0,∞)→ H−1/2(Γ), ελ(T ) := [[∂νεT ]](T ) ∀T ≥ 0.

Then ελ ∈ C([0,∞);H−1/2(Γ)) and

ελ(t) = [[∂νεT ]](t) t ≤ T + δ.

Proof. A new causality argument can be invoked (see exercises) to show that

εT (t) = εT+M(t)|BT ∀t ≤ T + δ M ≥ 0.

Therefore
[[∂νεT ]](T ) = [[∂νεT+M ]](T ) ∀M ≥ 0.

Finally, this implies that

ελ(t) = [[∂νεt]](t) = [[∂νεT ]](t) ∀t ∈ [0, T ].

Since εT : [0,∞) → XT is continuous (Proposition 7.3.1) and [[∂ν · ]] : XT → H−1/2(Γ) is
bounded, it follows that ελ : [0, T ]→ H−1/2(Γ) is continuous for all T .

Proposition 7.3.4 (Extension to free space). Let λ ∈ C2
0([0,∞);X), εT be the solution

of (7.24) and ελ be defined by Proposition 7.3.3. Consider the extension

εT : [0,∞)→ H1
∆(Rd \ (Γ ∪ ∂BT )) εT (t)|BT = εT (t), εT (t)|Rd\BT ≡ 0

Then εT : [0, T + δ]→ H1
∆(Rd \ Γ) is continuous and

εT (t) = (S ∗ Eελ)(t) 0 ≤ t < T + δ. (7.28)

Proof. It is clear that εT : [0,∞)→ H1(Rd)∩H1
∆(Rd \ (Γ∪∂BT )) is continuous. Let then

µ := [[∂νεT ]] : [0,∞)→ H−1/2(Γ), µT := ∂νT εT : [0,∞)→ H−1/2(∂BT ),

and note that by Proposition 7.3.3, µ(t) = ελ(t) for t ≤ T + δ, and that uT satisfies the
equations:

ε̈T (t) = ∆εT (t) ∀t ≥ 0, (7.29a)

[[∂νεT ]](t) = µ(t) ∀t ≥ 0, (7.29b)

[[∂νT εT ]](t) = µT (t) ∀t ≥ 0, (7.29c)

εT (0) = ε̇T (0) = 0. (7.29d)

Proceeding as in the proof of Proposition 7.2.3, we can write

EεT = S ∗ Eµ+ S∂BT ∗ EµT = S ∗ Eελ + S ∗ E(µ− ελ) + S∂BT ∗ EµT .

Since suppEµT ⊂ [T + δ,∞) (by the Waiting Time Property) and suppE(µ − ελ) ⊂
[T + δ,∞), the result follows readily.
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Corollary 7.3.5 (Identification of the Galerkin error operators). In the conditions and
notation of Proposition 7.3.4 it follows that

Eελ = Ehλ ∗ Eλ,

and therefore
ελ(t) = (Ehλ ∗ Eλ)(t) ∀t ≥ 0,

and
εT (t) = (Ehu ∗ Eλ)(t) 0 ≤ t < T + δ.

Proof. By Proposition 7.3.3,

ελ(t) + λ(t) = [[∂νεt]](t) + λ(t) ∈ Xh ∀t ≥ 0.

On the other hand, since γεT (t) ∈ X◦h for all t, by Proposition 7.3.4,

(V ∗ Eελ)(t) = γ(S ∗ Eελ)(t) = γεt(t) ∈ X◦h.

This shows that Eελ = Ehλ ∗ Eλ.

Conclusions. Like we did in Section 7.2, this collection of results can be gathered in
some regularity statements plus some estimates. For a causal distribution λ such that
λ|(0,∞) ∈ C2

0(R;H−1/2(Γ)), we thus prove that

Ehu ∗ λ ∈ C2(R;L2(BT )) ∩ C1(R;H1(Rd)) ∩ C(R;H1
∆(Rd \ Γ)) (7.30)

and (therefore)
Ehλ ∗ λ ∈ C(R;H−1/2(Γ)).

In addition to this, we get the estimates:

‖∇(Ehu ∗ λ)(t)‖Rd ≤ Cγ(‖λ(t)‖−1/2,Γ +B(λ, t)), (7.31a)

‖(Ehu ∗ λ)(t)‖1,Rd ≤ Cγ(‖λ(t)‖−1/2,Γ + c(t)B(λ, t)), (7.31b)

‖(Ehλ ∗ λ)(t)‖−1/2,Γ ≤
√

2CνCγ(‖λ(t)‖−1/2,Γ +B(λ, t)). (7.31c)

We will come back to these results in Section 7.5.

7.4 The Galerkin solver

The Galerkin equations, seen from the point of view of data, look for a causal Xh-valued
density λh such that

〈µh,V ∗ λh〉Γ = 〈µh, β〉Γ ∀µh ∈ Xh,

and then build uh = S ∗ λh. The corresponding operators are

Ghλ ∗ β = λh and Ghu ∗ β = uh = S ∗ Ghλβ.
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These operators were studied in the Laplace domain in Section 5.3. Once again, we will
study the operator β 7→ Ghu ∗ β and then use that Ghλ ∗ β = [[∂ν(Ghu ∗ β)]]. The distribution
uh = Ghu ∗ β is characterized as the solution of the evolution problem

uh ∈ TD(H1(Rd) ∩H1
∆(Rd \ Γ)), üh = ∆uh, γuh − β ∈ X◦h, [[∂νu

h]] ∈ Xh.

The process is triggered again with a cut-off on ∂BT , so that we look for uhT : [0,∞) →
H1(BT ) ∩H1

∆(BT \ Γ)

ühT (t) = ∆uhT (t) ∀t ≥ 0, (7.32a)

γTu
h
T (t) = 0 ∀t ≥ 0, (7.32b)

γuhT (t)− β(t) ∈ X◦h ∀t ≥ 0, (7.32c)

[[∂νu
h
T ]](t) ∈ Xh ∀t ≥ 0, (7.32d)

uhT (0) = u̇hT (0) = 0. (7.32e)

This problem uses the same set of transmission conditions as the one satisfied by the
Galerkin error operator (7.19), with the main difference that the essential transmission
condition is non-homogeneous while the natural one is homogeneous. As usual, the ho-
mogeneous boundary condition will be implicitly given by looking for uhT : [0,∞)→ XT .

The associated dynamical system. It will be no surprise to the reader that, given
the coincidences between (7.19) and (7.20), the functional setting for this section is exactly
the same as that of Section 7.3.

The lifting. Let L : H1/2 → H1
0 (BT ) 6= V be defined with the variational equations[

u0 ∈ H1
0 (BT ), γu− β ∈ X◦h,

(∇u0,∇v)BT + (u0, v)BT = 0 ∀v ∈ V,
(7.33)

or equivalently, with the transmission problem

u0 ∈ H1
0 (BT ), (7.34a)

−∆u0 + u0 = 0 in BT \ Γ, (7.34b)

γu0 − β ∈ X◦h, (7.34c)

[[∂νu0]] ∈ Xh. (7.34d)

Testing equations (7.33) with v = u0 − γ†β (recall the lifting of the trace γ† in (7.4)), we
can bound

‖u0‖XT = ‖u0‖1,BT ≤ ‖γ†β‖1,BT ≤ C†γ‖β‖1/2,Γ,

and thus
‖L‖H1/2(Γ)→Z ≤ C†γ where Z ∈ {H,H1(BT ),XT}. (7.35)
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Proposition 7.4.1 (Weak solutions in bounded domain). Let β ∈ C2
0([0,∞);H1/2(Γ)).

Then, there exists (a unique)

uhT : [0,∞)→ H1
0 (BT ),

satisfying

〈ühT (t), v〉V ′×V + (∇uhT (t),∇v)BT = 0 ∀v ∈ V ∀t ≥ 0, (7.36a)

γuhT (t)− β(t) ∈ X◦h ∀t ≥ 0, (7.36b)

uhT (0) = u̇hT (0) = 0, (7.36c)

with regularity

uhT ∈ C2([0,∞);V ′) ∩ C1([0,∞);L2(BT )) ∩ C([0,∞);H1
0 (BT )). (7.37)

Moreover, for all t ≥ 0,

‖∇uhT (t)‖BT ≤ C†γ
(
‖β(t)‖1/2,Γ +B(β, t)

)
,

‖uhT (t)‖1,BT ≤ C†γ
(
‖β(t)‖1/2,Γ + c(T )B(β, t)

)
,

‖u̇hT (t)‖BT ≤ C†γ
(
‖β(t)‖1/2,Γ +B(β, t)

)
,

where

c(T ) :=
√

1 + C2
T and B(β, t) :=

∫ t

0

‖β(τ)− β̈(τ)‖1/2,Γdτ.

Proof. Let
u0(t) := Lβ(t), f(t) := u0(t)− ü0(t) = L(β(t)− β̈(t))

and note that u0 ∈ C2
0([0,∞));XT ) and f ∈ C([0,∞);H). However, f does not take values

in V . We then consider the solution v0 : [0,∞)→ V to the problem

〈v̈0(t), v〉V ′×V + (∇v0(t),∇v)BT = (f(t), v)BT ∀v ∈ V ∀t ≥ 0, (7.38a)

v0(0) = v̇0(0) = 0. (7.38b)

By Proposition 6.5.1,

v0 ∈ C1([0,∞);L2(BT )) ∩ C([0,∞);H1(BT ))

and

C−1
T ‖v0(t)‖BT ≤ ‖∇v0(t)‖BT ≤

∫ t

0

‖f(τ)‖BT dτ ≤ C†γB(β, t),

where we have used (7.35) in the last inequality. We can thus define uhT := u0 + v0. What
is left is the proof that uhT satisfies equations (7.36), since everything else follows readily
from what has been shown for v0 and from the properties of the lifting L (7.35). To show
that uhT satisfies (7.36) we first note that

γuhT (t)− β(t) = γLβ(t)− β(t)︸ ︷︷ ︸
(see (7.33))

+ γv0(t)︸ ︷︷ ︸
(v0(t)∈V )

∈ X◦h.
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Also, using the fact that 〈·, ·〉V ′×V extends (·, ·)H , we prove that

〈ühT (t), v〉V ′×V + (∇uhT (t),∇v)V

= (ü0(t), v)BT + (∇u0(t),∇v)BT + (f(t), v)V (by (7.38a))

= (u0(t), v)BT + (∇u0(t),∇v)BT (definition of f)

= 0 ∀v ∈ V. (by (7.35), u0 = Lβ)

This finishes the proof.

Proposition 7.4.2 (Strong solutions in bounded domain). Let β ∈ C3
0([0,∞);H1/2(Γ)).

Then, there exists (a unique)

uhT : [0,∞)→ XT = H1
0 (BT ) ∩H1

∆(BT \ Γ),

satisfying

ühT (t) = ∆uhT (t) ∀t ≥ 0, (7.39a)

γuhT (t)− β(t) ∈ X◦h ∀t ≥ 0, (7.39b)

[[∂νu
h
T ]](t) ∈ Xh ∀t ≥ 0, (7.39c)

uhT (0) = u̇hT (0) = 0, (7.39d)

with regularity

uhT ∈ C2([0,∞);L2(BT )) ∩ C1([0,∞);H1
0 (BT )) ∩ C([0,∞);XT ). (7.40)

Moreover, uhT is also the solution of (7.36) and

‖∆uhT (t)‖BT \Γ ≤ C†γ(‖β(t)‖1/2,Γ + 2B(β̇, t)),

‖∇u̇hT (t)‖BT \Γ ≤ C†γ(‖β̇(t)‖1/2,Γ +B(β̇, t)),

‖[[∂νuhT ]](t)‖−1/2,Γ ≤
√

2CνC
†
γ(2‖β(t)‖1/2,Γ +B(β, t) + 2B(β̇, t)).

Proof. We define u0 ∈ C3
0([0,∞);XT ) and f ∈ C1

0([0,∞);L2(BT )) as in the proof of
Proposition 7.4.1:

u0(t) := Lβ(t), f(t) := u0(t)− ü0(t).

Then we consider the solution v0 : [0,∞)→ D(A) of the problem

v̈0(t) = ∆v0(t) + f(t) t ≥ 0, v0(0) = v̇0(0) = 0,

and we construct uhT := u0 + v0. It is clear that uhT (0) = u̇hT (0) = 0. Also,

γuhT (t)− β(t) = γLβ(t)− β(t)︸ ︷︷ ︸
(see (7.33))

+ γv0(t)︸ ︷︷ ︸
(v0(t)∈D(A)⊂V )

∈ X◦h

and
[[∂νu

h
T ]](t) = [[∂νu0]](t)︸ ︷︷ ︸

(see (7.34))

+ [[∂νv0]](t)︸ ︷︷ ︸
(v0(t)∈D(A))

∈ Xh.
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The right hand side of the problem satisfied by v0 is designed so that uhT satisfies the
differential equation

ühT (t) = ∆uhT (t) t ≥ 0,

and therefore uhT is the solution of (7.39). It follows from Proposition 6.5.2 that uhT satisfies
(7.40). The bound for ‖∆uhT (t)‖BT \Γ follows then from (7.35) and Proposition 6.5.2. This
bound and the bound for ‖∇uhT (t)‖BT given in Proposition 7.4.1 provide then a proof of
the bound for ‖[[∂νuhT ]](t)‖−1/2,Γ, which finishes the proof.

The final steps. Identification of the Galerkin solver from extensions of the functions
uhT follows exactly the same strategy as in Section 7.3, with very much the same proofs.
Here is a simple sketch of the process.

• Comparing EuhT with (S ∗ E[[∂νu
h
T ]])|BT (see Propositions 7.2.2 and 7.3.2) we prove

that
∂νTu

h
T (t) = 0 0 ≤ t ≤ T + δ.

• Doing as in Proposition 7.3.3 we define

λh : [0,∞)→ H−1/2(Γ), λh(T ) := [[∂νu
h
T ]](T ) T ≥ 0 (7.41)

and show that λh(t) = [[∂νu
h
T ]](t) for all t ∈ [0, T + δ]. This implies that λh ∈

C([0,∞);H−1/2(Γ)).

• With the same proof as in Proposition 7.3.4, we next show that

uhT (t) = (S ∗ Eλh)(t) 0 ≤ t ≤ T + δ,

and that uhT (t) ∈ H1
∆(Rd \ Γ) for all t ≤ T + δ. (As usual, the underlining makres

reference to extension by zero to Rd \BT .)

All of this leads to the final goal. We defer the collection of bounds for the Galerkin
solvers to the next section.

Proposition 7.4.3 (Identification of the Galerkin solver). Let uhT be the functions given
by Proposition 7.4.2 and let λh be defined by (7.41). Then

Eλh = Ghλ ∗ Eβ

and therefore
λh(t) = (Ghλ ∗ β)(t) ∀t ≥ 0,

and
uhT (t) = (Ghu ∗ Eβ)(t) 0 ≤ t < T + δ.
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7.5 Final version of all the results

In this section, we look carefully to everything we obtained in Sections 7.2, 7.3 and 7.4
and refine the results so that they hold for weaker densities or right hand sides. Some
ingredients first:

• We will use spaces of the form

Wk
+(R;X) := {β ∈ Ck−1(R;X) : supp β ⊂ [0,∞), β(k) ∈ L1

loc(R;X)},
Ck+(R;X) := {β ∈ Ck(R;X) : supp β ⊂ [0,∞)}.

• A generic constant C = C(Γ) will be used to collect all constants Cγ, C
†
γ, Cν , etc,

that appeared before. We will also consider a generic function c(t) ≤ C1 + C2 t to
display linear growth of constants at infinity.

• So far, dependence of operators with respect to data has been displayed using the
growing norms

B(ψ, t) :=

∫ t

0

‖ψ(τ)− ψ̈(τ)‖dτ,

where the norm that we are integrating was not explicited. We will present the
results with respect to the growing norms

Hk(ψ, t |X) :=
k∑
`=0

∫ t

0

‖ψ(`)(τ)‖X dτ.

Note that if ψ ∈ W1
+(R;X), then

‖ψ(t)‖X =
∥∥∥∫ t

0

ψ̇(τ)dτ
∥∥∥
X
≤ H1(ψ, t |X).

• Finally we consider the operator

∂−1u(t) :=

∫ t

0

u(τ)dτ,

i.e., L{∂−1u} = s−1U(s).

Theorem 7.5.1 (Mapping properties for the single layer potential). If λ ∈ W1
+(R;H−1/2(Γ)),

then
S ∗ λ ∈ C1

+(R;L2(Rd)) ∩ C+(R;H1(Rd)) (7.42)

and therefore
V ∗ λ ∈ C+(R;H1/2(Γ)).

Moreover, for all t ≥ 0

‖(S ∗ λ)(t)‖1,Rd ≤ C H2(∂−1λ, t |H−1/2(Γ)), (7.43a)

‖(V ∗ λ)(t)‖1/2,Γ ≤ C H2(∂−1λ, t |H−1/2(Γ)). (7.43b)
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If additionally λ ∈ W2
+(R;H−1/2(Γ)), then

Kt ∗ λ ∈ C+(R;H−1/2(Γ)). (7.44)

and for all t ≥ 0
‖(Kt ∗ λ)(t)‖−1/2,Γ ≤ C H2(λ, t |H−1/2(Γ)). (7.45)

Proof. For causal λ ∈ C2(R;H−1/2(Γ)), we let u := S ∗ λ. From the results of Section 7.2
(see specifically Propositions 7.2.1 and 7.2.3, as well as the conclusions drawn from the
latter at the end of the section), it follows that

u ∈ C2
+(R;L2(Rd)) ∩ C1

+(R;H1(Rd)) ∩ C+(R;H1
∆(Rd \ Γ))

and

‖u(t)‖1,Rd ≤ C(‖λ(t)‖−1/2,Γ + c(t)B(λ, t)), (7.46a)

‖u̇(t)‖1,Rd ≤ C(‖λ̇(t)‖−1/2,Γ +B(λ, t)), (7.46b)

‖ü(t)‖Rd\Γ + ‖{{∂νu}}(t)‖−1/2,Γ ≤ C(‖λ(t)‖−1/2,Γ +B(λ, t)). (7.46c)

(Note that the equation ü(t) = ∆u(t) provides the bound for the second derivative.) We
now endow the space

Xaux := {λ ∈ C2([0, T ];H−1/2(Γ)) : λ(0) = λ̇(0) = 0},

with the norm)

H2(λ, T |H−1/2(Γ)) =
2∑
`=0

∫ T

0

‖λ(`)(τ)‖−1/2,Γdτ

and consider the space

Yaux := {u ∈ C2([0, T ];L2(Rd)) ∩ C1([0, T ];H1(Rd)) ∩ C([0, T ];H1
∆(Rd \ Γ))

: u(0) = u̇(0) = ü(0) = 0},

(i.e., elements of Yaux can be extended by zero to (−∞, T ] without losing continuity),
endowed with the norm

max
0≤t≤T

‖ü(t)‖Rd + max
0≤t≤T

‖∇u̇(t)‖Rd + max
0≤t≤T

‖∆u(t)‖Rd\Γ.

Note that Yaux is a Banach space. Looking at values in the interval [0, T ], the bounds
(7.44) provide the continuity of the map Xaux 3 λ 7→ u ∈ Yaux. We can thus extend this
map to the closure of Xaux

{λ ∈ C1([0, T ];H−1/2(Γ) : λ̈ ∈ L1(Γ), λ(0) = λ̇(0) = 0}.

With this we have proved that the bounds (7.46) can be extended for u = S ∗ λ with
λ ∈ W2

+(R;H−1/2(Γ)). This proves the mapping property for the operator λ 7→ Kt ∗ λ in
the statement, as well as the bound (7.45).

If λ ∈ W1
+(R;H−1/2(Γ)), then ∂−1λ ∈ W2

+(R;H−1/2(Γ)). Considering then u :=
S ∗ ∂−1λ, and noticing that u̇ = S ∗ λ, we have proved (7.42). Using (7.46b), we prove
(7.43a). The continuity of V ∗λ and (7.43b) are a straightforward consequence of the fact
that V ∗ λ = γ(S ∗ λ).
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Theorem 7.5.2 (Mapping properties of the Galerkin error operator for V). If λ ∈
W1

+(R;H−1/2(Γ)), then

Ehu ∗ λ ∈ C1
+(R;L2(Rd)) ∩ C+(R;H1(Rd))

and for all t ≥ 0
‖(Ehu ∗ λ)(t)‖1,Rd ≤ C H2(∂−1λ, t |H−1/2(Γ)).

If additionally λ ∈ W2
+(R;H−1/2(Γ)), then

Ehλ ∗ λ ∈ C+(R;H−1/2(Γ))

and for all t ≥ 0
‖(Ehλ ∗ λ)(t)‖−1/2,Γ ≤ C H2(λ, t |H−1/2(Γ)).

All the bounds are independent of the choice of the discrete space Xh.

Proof. The argument is very similar to the one of Theorem 7.5.1. Given λ ∈ C2
+(R;H−1/2(Γ)),

we define εhu := Ehu ∗λ and εhλ = [[∂νε
h
u]] = Ehλ ∗λ. The results of Section 7.3 (see Propositions

7.3.1 and 7.3.4 and the conclusions at the end of the section) prove that

εhu ∈ C2
+(R;L2(Rd)) ∩ C1

+(R;H1(Rd)) ∩ C+(R;H1
∆(Rd \ Γ))

and

‖εhu(t)‖1,Rd ≤ C(‖λ(t)‖−1/2,Γ + c(t)B(λ, t)),

‖ε̇hu(t)‖1,Rd ≤ C(‖λ̇(t)‖−1/2,Γ +B(λ, t)),

‖ε̈hu(t)‖Rd\Γ + ‖[[∂νεhu]](t)‖−1/2,Γ ≤ C(‖λ(t)‖−1/2,Γ +B(λ, t)).

The remainder of the proof of Theorem 7.5.1 can be applied almost verbatim: first we
apply a density argument to weaken λ to be in W2

+(R;H−1/2(Γ)) and then we use a
shifting argument to work with Ehλ ∗ λ = d

dt
(Ehλ ∗ ∂−1λ).

Theorem 7.5.3 (Mapping properties of the Galerkin solver for V). If β ∈ W2
+(R;H1/2(Γ)),

then
Ghu ∗ β ∈ C1

+(R;L2(Rd)) ∩ C+(R;H1(Rd))

and for all t ≥ 0
‖(Ghu ∗ β)(t)‖1,Rd ≤ C H3(∂−1β, t |H1/2(Γ)).

If additionally β ∈ W3
+(R;H1/2(Γ)), then

Ghλ ∗ β ∈ C+(R;H−1/2(Γ))

and for all t ≥ 0
‖(Ghλ ∗ β)(t)‖−1/2,Γ ≤ C H3(β, t |H1/2(Γ)).

All the bounds are independent of the choice of the discrete space Xh and therefore, the
above assertions hold for the case Xh = H−1/2(Γ), in which case Ghu = D ∗ V−1 and
Ghλ = V−1.
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Proof. It is again very similar to the proofs of Theorems 7.5.1 and 7.5.2. We start with
β ∈ C3

+(R;H1/2(Γ)), define uh := S ∗ Ghλ = Ghu ∗ λ and note that by the results of Section
7.4,

uh ∈ C2
+(R;L2(Rd)) ∩ C1

+(R;H1(Rd)) ∩ C+(R;H1
∆(Rd \ Γ))

and

‖uh(t)‖1,Rd ≤ C(‖β(t)‖1/2,Γ + c(t)B(β, t)),

‖u̇h(t)‖1,Rd ≤ C(‖β(t)‖1/2,Γ + ‖β̇(t)‖1/2,Γ +B(β, t) +B(β̇, t)),

‖üh(t)‖Rd\Γ + ‖[[∂νuh]](t)‖−1/2,Γ ≤ C(‖β(t)‖1/2,Γ + ‖β̇(t)‖1/2,Γ +B(β̇, t)).

(These bounds come from the collection of bounds in Propositions 7.4.1 and 7.4.2.) The
remainder of the proof follows the usual pattern of a density argument followed by a
shifting argument.

7.6 Exercises

1. (Section 7.1) Prove that if

‖v‖B0 ≤ C0‖∇v‖B0 ∀v ∈ H1
0 (B0),

then
‖v‖BT ≤ C0(1 + T/R)‖∇v‖BT ∀v ∈ H1

0 (BT ).

2. (Section 7.1) Prove Lemma 7.1.2.

3. (Section 7.2) Prove the bounds given in Proposition 7.2.1.

4. (Section 7.2) Let ξ ∈ TD(H1/2(∂BT )). Show that there exists

M∈ TD(B(H1/2(∂BT ), H1(BT ) ∩H1
∆(BT \ Γ))

such that w =M∗ ξ is the unique solution in TD(H1(BT ) ∩H1
∆(BT \ Γ)) of

ẅ = ∆w [[∂νw]] = 0 γTw = ξ.

(Hint. This can be done using the Laplace transform or writing w in terms of
potentials and operators defined on the boundary ∂BT .)

5. (Section 7.2) Let λ ∈ TD(H−1/2(Γ)) be such that λ|(0,∞) ∈ C2
0([0,∞);H−1/2(Γ)) and

let u := S ∗ λ. Show that

u ∈ C2([0,∞);L2(Rd)) ∩ C1([0,∞);H1(Rd)) ∩ C([0,∞);H1
∆(Rd \ Γ)).

Use the initial values and the differential equation to show that this property can
be extended through the origin t = 0 to

u ∈ C2(R;L2(Rd)) ∩ C1(R;H1(Rd)) ∩ C(R;H1
∆(Rd \ Γ)).
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6. (Section 7.3) Let Xh ⊂ H−1/2(Γ) be closed and let

V := {v ∈ H1
0 (BT ) : γv ∈ X◦h}.

Show that if u ∈ H1
∆(BT \ Γ), then

[[∂νu]] ∈ Xh ⇐⇒ (∇u,∇v)BT \Γ + (∆u, v)BT \Γ = 0 ∀v ∈ V.

7. (Section 7.3) Show that problems (7.21) and (7.22) are equivalent.

8. (Section 7.3) Let εT and εT+M be the solutions of (7.24) for cut-off domains BT and
BT+M respectively, where M > 0.

(a) Use the Waiting Time property (as phrased in Proposition 7.3.2) to show that
the function

εT : [0,∞)→ H1
0 (BT+M) ∩H1

∆(BT+M \ (Γ ∪ ∂BT ))

given by

εT (t)(x) :=

{
εT (t)(x), x ∈ BT ,
0, x ∈ BT+M \BT ,

is a strong solution of the same problem as εT+M in the time interval [0, T + δ].

(b) Use an energy conservation argument (see the final arguments in the proof of
Proposition 6.3.2) to show that εT+M = εT in [0, T + δ].

9. (Section 7.3) Give all details leading to the proof of (7.30) and (7.31). (Hint. The
arguments are the same as those used at the end of Section 7.2 to derive regularity
and estimates for the single layer potential.)

10. (Section 7.4) Show that problems (7.33) and (7.34) are equivalent and uniquely
solvable.

11. (Section 7.4) Weak solutions are distributional solutions. Consider the func-
tion uhT : [0,∞)→ H1

0 (BT ) defined by (7.36)-(7.37) and assume that β is polynomi-
ally bounded.

(a) Show that we can understand EuhT ∈ TD(H1
0 (BT )) and also EuhT ∈ TD(XT ).

(Hint. Use the last part of Proposition 6.5.1 to study the extension of
∫ t

0
uhT .)

(b) Show that EuhT is the unique solution of the problem

w ∈ TD(XT ) ẅ = ∆w, γw − Eβ ∈ X◦h, [[∂νw]] ∈ Xh.

(Hint. Define U(s) := L{EuhT} ∈ XT and show that

γU(s)− L{Eβ} ∈ X◦h s2〈U(s), v〉V ′×V + (∇U(s),∇v)BT = 0 ∀v ∈ V.

This can be done in several different ways, one of which consists of rewriting
(7.36a) as distributional equation in V ′.)
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The slightly surprising result of this exercise consists of the fact that even if the
strong equations are satisfied in V ′ (because there is no regularity to have them
in L2(BT ) and to separate the natural transmission condition), the distributional
equation is actually satisfied in L2(BT ) and the natural transmission condition is
satisfied in the sense of distributions. The reader should compare this with the
paradox of the moving waves in the exercise list of Chapter 2.

12. (Section 7.5) Show that

Hk(∂
−1ψ, t |X) ≤ t

∫ t

0

‖ψ(τ)‖Xdτ +Hk−1(ψ, t |X).
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Chapter 8

The double layer potential

This chapter is the double layer counterpart of Chapters 5 and 7. We will start by studying

D ∗ ϕ, K ∗ ϕ, and W ∗ ϕ.

We will next focus on the semidiscrete inversion of the convolution operator ϕ 7→ W ∗ ϕ.

8.1 Semidiscrete inverse and Galerkin error

The Galerkin solver. We choose a closed subspace Yh ⊂ H1/2(Γ) and first think
of the following Galerkin solver: for causal α ∈ TD(H−1/2(Γ)) find a causal Yh-valued
distribution ϕh such that

〈W ∗ ϕh, ψh〉Γ = 〈α, ψh〉Γ ∀ψh ∈ Yh (8.1)

and then define
uh := D ∗ ϕh. (8.2)

Note that (8.1) can be written in our usual shorthand notation

W ∗ ϕh − α ∈ Y ◦h := {µ ∈ H−1/2(Γ) : 〈µ, ψh〉Γ = 0 ∀ψh ∈ Yh}. (8.3)

Note also that from the point of view of uh, we have

[[γuh]] ∈ Yh, [[∂νu
h]] = 0, ∂νu

h + α ∈ Y ◦h , (8.4)

and that the density is recovered with the jump of the trace ϕh := −[[γuh]]. We will write

ϕh = Ghϕ ∗ α (8.5)

and avoid any symbol for the operator α 7→ D∗Ghϕ∗α to avoid confusion with the Galerkin
solver of Chapter 7.
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The Galerkin error operator. As usual, we think of equations (8.1) as a discretization
of the equation from the point of view of an exact solution. We thus start with ϕ ∈
TD(H1/2(Γ) and look for a causal Yh-valued distribution ϕh such that

〈W ∗ (ϕh − ϕ), ψh〉Γ = 0 ∀ψh ∈ Yh. (8.6)

What we care about is the error operator

Ehϕ ∗ ϕ = ϕh − ϕ = Ghϕ ∗W ∗ ϕ− ϕ (8.7)

and its associated potential

εhu := D ∗ Ehϕ ∗ ϕ = D ∗ ϕh −D ∗ ϕ. (8.8)

Once more, from the point of view of the potential, we can write

[[γεhu]] + ϕ ∈ Yh, [[∂νε
h
u]] = 0, ∂νε

h
u ∈ Y ◦h . (8.9)

These equations are to be compared with (8.4). At this time, the reader should be able
to recognize how in this case the Galerkin solver is going to be simpler to analyze than
the error operator, just by looking at what transmission condition is non-homogeneous.

The corresponding symbols for the continuous problem. Let us first refresh our
memory with the continuous operators. For

D := L{D}, W := L{W} = −∂νD, K := L{K} := {{γD}},

we have (see Proposition 3.4.1) for all s ∈ C+

‖W(s)‖H1/2(Γ)→H−1/2(Γ) ≤ C
|s|2

σσ
, (8.10)

‖D(s)‖H1/2(Γ)→H1(Rd\Γ) ≤ C
|s|3/2

σ σ3/2
, (8.11)

‖K(s)‖H1/2(Γ)→H1(Rd\Γ) ≤ C
|s|3/2

σ σ3/2
. (8.12)

Since for each value of s ∈ C+, K(s) is the transpose (not the adjoint) for Kt(s) : H−1/2 →
H1/2(Γ) and Kt(s) = {{∂νS(s)}}, the bound (8.12) is also a consequence of the bound we
got as early as in Proposition 2.6.2. We finally recall the coercivity estimate of Proposition
3.4.1

Re
(
e−ıArg s 〈W(s)ϕ, ϕ〉Γ

)
≥ C

σσ2

|s|
‖ϕ‖2

1/2,Γ ∀ϕ ∈ H1/2(Γ) ∀s ∈ C+. (8.13)
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Symbols for the semidiscrete operators. We now consider

Gh
ϕ := L{Ghϕ} and Eh

ϕ := L{Ehϕ}

and note that
Eh
ϕ(s) = Gh

ϕ(s)W(s)− I.

It follows from the coercivity estimate (8.13) that

‖Gh
ϕ(s)‖H−1/2(Γ)→H1/2(Γ) ≤ C

|s|
σ σ2

∀s ∈ C+.

We will need to study this operator again though, given our interest in the postprocessed
operator D(s)Gh

ϕ(s).

8.2 Laplace domain analysis

A useful space. The proofs of all the assertions in this paragraph are proposed as
exercises. We first consider the space

Hh := {u ∈ H1(Rd \ Γ) : [[γu]] ∈ Yh},

note that the operator that maps Hh 3 u 7→ (γ−u, [[γu]]) has H1/2(Γ)× Yh as range, and
then use this fact to prove this weak (but equivalent) formulation of the natural boundary
conditions that we will be using.

Lemma 8.2.1. Let u ∈ H1
∆(Rd \ Γ). Then the conditions

[[∂νu]] = 0, ∂νu+ α ∈ Y ◦h

are equivalent to

(∇u,∇v)Rd\Γ + (∆u, v)Rd\Γ = −〈α, [[γv]]〉Γ ∀v ∈ Hh.

Analysis of the Galerkin solver. We will follow the four step program of Sections
5.3 and 5.4. Details are left to the reader. We start with α ∈ H−1/2(Γ) and want to study

ϕh = Gh
ϕ(s)α and uh = D(s)Gh

ϕ(s)α = D(s)ϕh

noticing that ϕh = −[[γuh]].

• Step # 1 (Transmission problem). uh = D(s)Gh
ϕ(s)α if and only if

uh ∈ H1(Rd \ Γ), (8.14a)

∆uh − s2uh = 0 in Rd \ Γ, (8.14b)

[[γuh]] ∈ Yh, (8.14c)

[[∂νu
h]] = 0, (8.14d)

∂νu
h + α ∈ Y ◦h . (8.14e)
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Note that, compared to the transmission problems related to the single layer po-
tential (Propositions 5.3.1 and 5.4.1), there is one more transmission condition. In
fact, in those problems, the condition [[γ·]] = 0 was implicit to the fact that solutions
were elements of H1(Rd).

• Step #2 (Variational formulation) Problem (8.14) is equivalent to[
uh ∈ Hh,

as,Rd\Γ(uh, vh) = −〈α, γvh〉Γ ∀vh ∈ Hh.
(8.15)

• Step # 3 (Energy estimate) The solution of (8.15) satisfies

|||uh||||s|,Rd\Γ ≤ C
|s|
σ σ
‖α‖−1/2,Γ

and therefore

‖D(s)Gh
ϕ(s)‖H−1/2(Γ)→H1(Rd\Γ) ≤ C

|s|
σσ2

∀s ∈ C+. (8.16)

• Step # 4 (Boundary wrap-up). Taking the jump of the trace in (8.16), we obtain

‖Gh
ϕ(s)‖H−1/2(Γ)→H1/2(Γ) ≤ C

|s|
σ σ2

∀s ∈ C+, (8.17)

which was already known using a direct coercivity estimate.

Analysis of the Galerkin error operator. We now focus on the operators

Eh
ϕ(s) = Gh

ϕ(s)W(s)− I and D(s)Eh
ϕ(s).

The four step process goes in parallel to the one above, with the only difference that we
will have to come up with a proper lifting of the essential transmission condition (as we
did in Proposition 5.3.3 for the Single Layer potential) at the time of obtaining the energy
estimate. This being an error analysis, we start with ϕ ∈ H1/2(Γ) and proceed from here.

• Step # 1 (Transmission problem). εhu = D(s)Eh
ϕ(s)ϕ if and only if

εhu ∈ H1(Rd \ Γ), (8.18a)

∆εhu − s2εhu = 0 in Rd \ Γ, (8.18b)

[[γεhu]] + ϕ ∈ Yh, (8.18c)

[[∂νε
h
u]] = 0, (8.18d)

∂νε
h
u ∈ Y ◦h . (8.18e)

• Step #2 (Variational formulation) Problem (8.18) is equivalent to[
εhu ∈ H1(Rd \ Γ) [[γεhu]] + ϕ ∈ Yh,

as,Rd\Γ(εhu, v
h) = 0 ∀vh ∈ Hh.

(8.19)
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• Step # 3 (Energy estimate) Using the lifting of Proposition 2.5.1 in Ω−, extended
by zero to the exterior domain, we can build

uϕ(s) ∈ H1(Rd \ Γ), [[uϕ(s)]] = ϕ, |||uϕ(s)||||s|,Rd\Γ ≤ C
|s|1/2

σ1/2
‖ϕ‖1/2,Γ.

Then, εhu + uϕ(s) ∈ Hh can be used as a test in (8.19) and therefore the solution of
(8.19) satisfies

|||εhu||||s|,Rd\Γ ≤ |||εhu + uϕ(s)||||s|,Rd\Γ + |||uϕ(s)||||s|,Rd\Γ ≤
( |s|
σ

+ 1
)
|||uϕ(s)||||s|,Rd\Γ.

From these inequalities we easily derive the bound

‖D(s)Eh
ϕ(s)‖H1/2(Γ)→H1(Rd\Γ) ≤ C

|s|3/2

σσ3/2
∀s ∈ C+. (8.20)

• Step # 4 (Boundary wrap-up). Taking the jump of the trace in (8.20), we finally
prove

‖Eh
ϕ(s)‖H1/2(Γ)→H1/2(Γ) ≤ C

|s|3/2

σσ3/2
∀s ∈ C+. (8.21)

8.3 The cut-off process

Geometry. The set up is the same as in Chapter 7. We write

Ω− ⊂ B0 := B(0;R), BT := B(0;R + T ), δ := dist (∂B0,Γ)

and consider the operators on ∂BT

γT : H1(BT \ Ω−)→ H1/2(∂BT ) and ∂νT : H1
∆(BT \ Ω−)→ H−1/2(∂BT ).

Inequalities. We now collect an extended version of the inequality toolbox of Section
7.1. Two new spaces will be relevant. The first one contains a Dirichlet boundary condi-
tion on ∂BT but allows jumps across Γ:

H1
∂BT

(BT \ Γ) := {u ∈ H1(BT \ Γ) : γTu = 0}.

It is clear that ‖∇ · ‖BT \Γ does not define a norm in H1
∂BT

(BT \ Γ), but the simple
correction

‖∇u‖2
BT \Γ + |(u)|2, where (u) :=

1

|Ω−|1/2

∫
Ω−
u, (8.22)

does. The second space includes the Laplacian

YT := {u ∈ H1
∂BT

(BT \ Γ) : ∆u ∈ L2(BT \ Γ)} = {u ∈ H1
∆(BT \ Γ) : γTu = 0}, (8.23)

and is endowed with the seminorm

|u|2YT := ‖∇u‖2
BT \Γ + ‖∆u‖2

BT \Γ.
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(a) In addition to the Poincaré-Friedrichs inequality

‖v‖BT ≤ CT‖∇v‖BT ∀v ∈ H1
0 (BT ), CT = C0(1 + T/R), (8.24)

we will need a scale-dependent generalized Poincaré inequality

‖u‖BT ≤ ĈT

(
‖∇u‖2

BT \Γ + |(u)|2
)1/2

∀u ∈ H1
∂BT

(BT \ Γ). (8.25)

We could conjecture that we can bound ĈT ≤ C1 + C2T . This will be not relevant
in the sequel, since the constant ĈT will be eliminated from all expressions in the
final version of the estimates.

(b) Boundedness of the trace operators. For simplicity will use a joint constant for the
jump and average of the trace on Γ:

‖[[γu]]‖1/2,Γ + ‖{{γu}}‖1/2,Γ ≤ Cγ‖u‖1,B0\Γ ∀u ∈ H1(B0 \ Γ). (8.26)

(c) Boundedness of the normal derivative operator:

‖∂±ν u‖−1/2,Γ ≤ Cν

(
‖∇u‖2

B0∩Ω± + ‖∆u‖2
B0∩Ω±

)1/2

∀u ∈ H1(B0 \ Γ). (8.27)

(d) A one sided lifting of the trace will be used as a lifting of the jump of the trace
across Γ. We consider an operator [[γ]]† : H1/2(Γ) → H1

∂B0
(B0 \ Γ) and a constant

C†γ > 0 such that

[[[[γ]]†α]] = α, ‖[[γ]]†α‖1,B0\Γ = ‖[[γ]]†α‖1,Ω− ≤ C†γ‖α‖1/2,Γ ∀α ∈ H1/2(Γ). (8.28)

8.4 Potentials and operators

We start with the operators

D ∗ ϕ, W ∗ ϕ = −∂ν(D ∗ ϕ), and K ∗ ϕ = {{γ(D ∗ ϕ)}}.

In terms of the potential, the cut-off problem is the search for uT : [0,∞) → YT (this
includes a homogeneous Dirichlet boundary condition on ∂BT ) such that

üT (t) = ∆uT (t) ∀t ≥ 0, (8.29a)

[[γuT ]](t) + ϕ(t) = 0 ∀t ≥ 0, (8.29b)

[[∂νuT ]](t) = 0 ∀t ≥ 0, (8.29c)

uT (0) = u̇T (0) = 0. (8.29d)

(Compare with (7.5), the corresponding cut-off problem for the single layer potential.)
The process will mimick that of the Galerkin solver for the single layer operator, using
first a weak solution to get some bounds and then a strong solution to obtain what is left.
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The dynamical system triplet. The spaces and norms are the same as those of
Section 7.2, namely

H := L2(BT ),

V := H1
0 (BT ),

D(A) := H1
0 (BT ) ∩H2(BT ) = H1

0 (BT ) ∩H1
∆(BT )

= {u ∈ V : ∆u ∈ L2(BT \ Γ), [[∂νu]] = 0},

with
‖u‖H := ‖u‖BT , [u, v] := (∇u,∇v)BT .

The lifting. We consider the operator L : H1/2(Γ)→ YT given by the solution of

u0 ∈ H1
∂BT

(BT \ Γ),

−∆u0 + u0 = 0 in BT \ Γ,

[[γu0]] = −ϕ,
[[∂νu0]] = 0,

that is, [
u0 ∈ H1

∂BT
(BT \ Γ), [[γu0]] = −ϕ,

(∇u0,∇v)BT \Γ + (u0, v)BT = 0 ∀v ∈ H1
0 (BT ).

Testing then with v = u0 + [[γ]]†ϕ, it is easy to prove that

‖L‖H1/2(Γ)→Z ≤ C†γ Z ∈ {L2(BT ), H1(BT \ Γ),YT}. (8.30)

Proposition 8.4.1 (Weak solutions in bounded domain). Let ϕ ∈ C2
0([0,∞);H1/2(Γ)).

Then, there exists (a unique)

uT : [0,∞)→ H1
∂BT

(BT \ Γ)

such that

〈üT (t), v〉V ′×V + (∇uT (t),∇v)BT \Γ = 0 ∀v ∈ V ∀t ≥ 0, (8.31a)

[[γuT ]](t) + ϕ(t) = 0 ∀t ≥ 0, (8.31b)

uT (0) = u̇T (0) = 0, (8.31c)

with regularity

uT ∈ C2([0,∞);V ′) ∩ C1([0,∞);L2(BT )) ∩ C([0,∞);H1
∂BT

(BT \ Γ)). (8.32)

Moreover, for all t ≥ 0,

‖uT (t)‖BT ≤ C†γ
(
‖ϕ(t)‖1/2,Γ + CTB(ϕ, t)

)
,

‖∇uT (t)‖BT \Γ ≤ C†γ
(
‖ϕ(t)‖1/2,Γ +B(ϕ, t)

)
,

‖u̇T (t)‖BT ≤ C†γ
(
‖ϕ̇(t)‖1/2,Γ +B(ϕ, t)

)
,

‖{{γuT}}(t)‖1/2,Γ ≤ CγC
†
γ

(
‖ϕ(t)‖1/2,Γ + c(T )B(ϕ, t)

)
138



where

c(T ) :=
√

1 + C2
T and B(ϕ, t) :=

∫ t

0

‖ϕ(τ)− ϕ̈(τ)‖1/2,Γdτ.

Proof. The entire proof is based on showing that if we define u0(t) := Lϕ(t), f(t) :=
u0(t)− ü0(t), and v0 : [0,∞)→ H1

0 (BT ) = V is the solution to the problem

〈v̈0(t), v〉V ′×V + (∇v0(t),∇v)BT = (f(t), v)BT ∀v ∈ V ∀t ≥ 0,

v0(0) = v̇0(0) = 0,

then uT := u0 + v0 is the unique solution of (7.36). It is clear that u0 ∈ C2
0([0,∞);YT ),

while (see Proposition 6.5.1)

v0 ∈ C2([0,∞);V ′) ∩ C1([0,∞);L2(BT )) ∩ C([0,∞);H1
0 (BT )).

The bounds follows then from (8.30) (to estimate u0) and Proposition 6.4.2 (to estimate
v0). To bound {{γuT}}(t), use a bound for the H1(BT ) norm and (8.26).

Proposition 8.4.2 (Strong solutions in bounded domain). Let ϕ ∈ C3
0([0,∞);H1/2(Γ)).

Then, there exists (a unique)
uT : [0,∞)→ YT ,

satisfying

üT (t) = ∆uT (t) ∀t ≥ 0, (8.34a)

[[γuT (t)]] + ϕ(t) = 0 ∀t ≥ 0, (8.34b)

[[∂νuT ]](t) = 0 ∀t ≥ 0, (8.34c)

uT (0) = u̇T (0) = 0, (8.34d)

with regularity

uT ∈ C2([0,∞);L2(BT )) ∩ C1([0,∞);H1
∂BT

(BT \ Γ)) ∩ C([0,∞);YT ). (8.35)

Moreover, uT is also the solution of (8.31) and

‖∆uT (t)‖BT \Γ ≤ C†γ(‖ϕ(t)‖1/2,Γ + 2B(ϕ̇, t)),

‖∇u̇T (t)‖BT \Γ ≤ C†γ(‖ϕ̇(t)‖1/2,Γ +B(ϕ̇, t)),

‖∂νuT (t)‖−1/2,Γ ≤ CνC
†
γ(2‖ϕ(t)‖1/2,Γ +B(ϕ, t) + 2B(ϕ̇, t)).

Proof. We now follow the steps of the proof of Proposition 7.4.2. To do that, we define
u0(t) := Lϕ(t), f(t) := u0(t)−ü0(t), as in the proof of Proposition 8.4.1. We then consider
v0 : [0,∞)→ D(A) as the solution of

v̈0(t) = ∆v0(t) + f(t) ∀t ≥ 0, v0(t) = v̇0(t) = 0.

Note that u0 ∈ C3
0([0,∞);YT ) and

v0 ∈ C2([0,∞);L2(BT )) ∩ C1([0,∞);H1
0 (BT )) ∩ C([0,∞);D(A)).
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It is then easy to show that uT := u0 + v0 satisfies (8.34) and (8.35). It is also easy to
show that a solution of (8.34) is a solution of (8.31).

To bound the Laplacian of uT we first use (8.30) to obtain

‖∆u0(t)‖BT \Γ ≤ C†γ‖ϕ(t)‖1/2,Γ. (8.36)

At the same time, by Proposition 6.4.3 and (8.30), it follows that

‖∆v0(t)‖BT ≤ 2

∫ t

0

‖ḟ(τ)‖BT dτ ≤ 2C†γB(ϕ̇, t). (8.37)

The bound for ‖∆uT (t)‖BT \Γ is just the collection of (8.36) and (8.37). The bound for
‖∂νuT (t)‖−1/2,Γ follows now from (8.27), the bound for ‖∆uT (t)‖BT \Γ and the estimate of
‖∇uT (t)‖BT \Γ in Proposition 8.4.1.

Proposition 8.4.3 (Waiting Time on ∂BT ). Let uT : [0,∞) → YT be the solution of
(8.34) for ϕ ∈ C4

0([0,∞);H1/2(Γ)). Then

∂νTuT (t) = 0 0 ≤ t ≤ T + δ.

Proof. As usual in this kind of results, assume that ϕ is polynomially bounded as t→∞.
The plan of the proof is similar to that of Proposition 7.2.2. Consider first

w := EuT − (D ∗ Eϕ)BT ∈ TD(H1
∆(BT \ Γ)), ξ := −γT (D ∗ ϕ) ∈ TD(H1/2(∂BT )).

Prove next that

w ∈ TD(H1
∆(BT \ Γ)), ẅ = ∆w, [[γw]] = 0, [[∂νw]] = 0, γTw = ξ,

and that this problem is uniquely solvable. Use the finite speed of propagation of the
double layer potential (Proposition 7.1.1) to show that supp ξ ⊂ [T + δ,∞) and therefore

suppw ⊂ [T + δ,∞).

Use again Proposition 7.1.1 to show that supp ∂νTEuT ⊂ [T+δ,∞) and finish the proof.

Proposition 8.4.4 (Extension to free space). Let ϕ ∈ C3
0([0,∞);H1/2(Γ)) and uT be the

solution of (8.34). Consider the extension

uT : [0,∞)→ H1
∆(Rd \ (Γ ∪ ∂BT ))

given by
uT (t)|BT = uT (t) and uT (t)|Rd\BT = 0.

Then uT : [0, T + δ]→ H1
∆(Rd \ Γ) is continuous and

uT (t) = (D ∗ Eϕ)(t) 0 ≤ t < T + δ.
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Proof. The proof is a slight variant of the proof of Proposition 7.2.3. We first prove that

EuT = D ∗ Eϕ+ S∂BT ∗ E∂νTuT

and then use Proposition 8.4.3 to show that supp (EuT −D ∗Eϕ) ⊂ [T + δ,∞). The fact
that uT (t) ∈ H1

∆(Rd \ Γ) for t ≤ T + δ is a direct consequence of Proposition 7.2.3.

Theorem 8.4.5 (Mapping properties for the double layer potential). If ϕ ∈ W2
+(R;H1/2(Γ)),

then
D ∗ ϕ ∈ C1

+(R;L2(Rd)) ∩ C+(R;H1(Rd \ Γ))

and therefore
K ∗ ϕ ∈ C+(R;H1/2(Γ)).

Moreover, for all t ≥ 0

‖(D ∗ ϕ)(t)‖1,Rd\ ≤ C H3(∂−1ϕ, t |H1/2(Γ)),

‖(K ∗ ϕ)(t)‖1/2,Γ ≤ C H3(∂−1ϕ, t |H1/2(Γ)).

If additionally ϕ ∈ W3
+(R;H1/2(Γ)), then

W ∗ ϕ ∈ C+(R;H−1/2(Γ)).

and for all t ≥ 0
‖(W ∗ ϕ)(t)‖−1/2,Γ ≤ C H3(ϕ, t |H1/2(Γ)).

Proof. For causal ϕ ∈ C3(R;H−1/2(Γ)), we let u := D ∗ ϕ. From the results above
(Propositions 8.4.1, 8.4.2, and 8.4.4) it follows that

u ∈ C2
+(R;L2(Rd)) ∩ C1

+(R;H1(Rd \ Γ)) ∩ C+(R;H1
∆(Rd \ Γ)).

Also, taking T = t in Propositions 8.4.1 and 8.4.2, it follows that

‖u(t)‖1,Rd\Γ ≤ C(‖ϕ(t)‖−1/2,Γ + c(t)B(ϕ, t)),

‖u̇(t)‖1,Rd\Γ ≤ C(‖ϕ̇(t)‖−1/2,Γ +B(ϕ, t) +B(ϕ̇, t)),

‖ü(t)‖Rd\Γ ≤ C(‖ϕ(t)‖−1/2,Γ +B(ϕ̇, t)),

‖(∂νu)(t)‖−1/2,Γ ≤ C(‖ϕ̇(t)‖−1/2,Γ +B(ϕ, t) +B(ϕ̇, t)).

The remainder of the proof follows, line by line, the proof of Theorem 7.5.1.

8.5 Galerkin solver for the hypersingular operator

Given a causal H−1/2(Γ)-valued distribution α, we deal here with the discretization of
the equation W ∗ ϕ = α. This is carried out on a discrete space Yh ⊂ H1/2(Γ). We will
assume that

P0(Γ) ⊂ Yh, (8.38)
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although, more properly speaking, what we need is γP0(Ω−) ⊂ Yh. We then look for a
causal H1/2(Γ)-valued distribution ϕh such that

ϕh ∈ Yh, W ∗ ϕh − α ∈ Y ◦h

and consider the associated potential

uh = D ∗ ϕh.

In terms of the potential uh, we are looking for

uh ∈ TD(H1
∆(Rd \ Γ)),

üh = ∆uh,

[[γuh]] ∈ Yh,
[[∂νu

h]] = 0,

∂νu
h + α ∈ Y ◦h .

Cut-off at an external (eventually moving) boundary ∂BT will be done as usual, leading
to a dynamical system, which, as a novelty, will contain a rigid motion.

Dynamical system. We start with

H := L2(BT ) ‖u‖H := ‖u‖BT , M := span{χΩ−},

so that the projection onto M is

Pu =
( 1

|Ω−|

∫
Ω−

u
)
χΩ− =

( 1

|Ω−|1/2

∫
Ω−

u
) 1

|Ω−|1/2
χΩ−

and (see (8.22))
‖Pu‖BT = ‖Pu‖Ω− = |(u)|.

We next consider

V := {u ∈ H1
∂BT

(BT \ Γ) : [[γu]] ∈ Yh} [u, v] := (∇u,∇v)BT \Γ,

as well as

D(A) := {u ∈ V : ∆u ∈ L2(BT \ Γ) : [[∂νu]] = 0, ∂νu ∈ Y ◦h },

with the operator A being the distributional Laplacian in BT \Γ. The condition (8.38) is
used to show that M ⊂ V . Let us now check all the hypotheses:

• Since D(BT \ Γ) ⊂ V ⊂ H1(BT \ Γ) ⊂ L2(BT ), the compactness and density of the
injection V ⊂ H is straightforward to prove.

• The constant for the inequality between norms in H and V is given by the constant
of the generalized Poincaré inequality (8.25).
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• To prove the associated Green’s formula, we just need to use Lemma 8.2.1.

• Finally, given f ∈ L2(BT ) we can solve[
u ∈ V,

(∇u,∇v)BT \Γ + (u, v)BT = (f, v)BT ∀v ∈ V.

Then, by Lemma 8.2.1, u ∈ D(A) and −∆u+ u = f .

Lifting. Consider the operator L : H1/2(Γ)→ YT that associated u0 = Lα by solving[
u0 ∈ V,

(∇u0,∇v)BT \Γ + (u0, v)BT = −〈α, [[γv]]〉Γ ∀α ∈ V,
(8.39)

or equivalently

u0 ∈ H1
∂BT

(BT \ Γ),

−∆u0 + u0 = 0 in BT \ Γ,

[[γu0]] ∈ Yh,
[[∂νu0]] = 0,

∂νu0 + α ∈ Y ◦h .

It is then easy to see that

‖Lα‖1,BT = |Lα|YT ≤ Cγ‖α‖−1/2,Γ. (8.40)

Testing (8.39) with v = |Ω−|−1/2χΩ− , it follows that

PLα = −
( 1

|Ω−|
〈α, 1〉Γ

)
χΩ− . (8.41)

Proposition 8.5.1. Let α ∈ C2
0([0,∞);H−1/2(Γ)). Then there exists a unique

uhT : [0,∞)→ H1
∂BT

(BT \ Γ),

ühT (t) = ∆uhT (t) ∀t ≥ 0, (8.42a)

[[γuhT ]](t) ∈ Yh ∀t ≥ 0, (8.42b)

[[∂νu
h
T ]](t) = 0 ∀t ≥ 0, (8.42c)

∂νu
h
T (t) + α(t) ∈ Y ◦h , (8.42d)

uhT (0) = u̇hT (0) = 0, (8.42e)

and

uhT ∈ C2([0,∞);L2(BT )) ∩ C1([0,∞);H1(BT \ Γ)) ∩ C([0,∞);YT )). (8.43)
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Moreover, for all t ≥ 0,

‖uhT (t)‖1,BT \Γ ≤ |Ω−|−1/2|ρ(t)|+ Cγ(‖α(t)‖−1/2,Γ + ĉ(T )B(α, t)),

‖u̇hT (t)‖1,BT \Γ ≤ |Ω−|−1/2|ρ̇(t)|+ Cγ(‖α̇(t)‖−1/2,Γ +
√

2B(α, t)),

‖∆uhT (t)‖BT \Γ ≤ Cγ(‖α(t)‖−1/2,Γ +B(α, t)),

where

ĉ(T ) :=

√
1 + Ĉ2

T , B(α, t) :=

∫ t

0

‖α(τ)− α̈(τ)‖−1/2,Γdτ,

and

ρ(t) :=

∫ t

0

(t− τ)〈α(t), 1〉Γdτ.

Proof. The proof of this result requires taking care of the rigid motion that is excited in
the system. This will be done counting on the results in Section 6.6. We define

u0(t) := Lα(t), f(t) := u0(t)− ü0(t) = L(α(t)− α̈(t)),

consider the rigid motion (see Proposition 6.6.1 and (8.41))

mα(t) := Pu0(t) +mf (t) = Pu0(t) +

∫ t

0

(t− τ)Pf(τ)dτ

= PLα(t) +

∫ t

0

(t− τ)PLα(τ)dτ −
∫ t

0

(t− τ)PLα̈(τ)dτ

=

∫ t

0

(t− τ)PLα(τ)dτ = − 1

|Ω−|

(∫ t

0

(t− τ)〈α(τ), 1〉Γdτ
)
χΩ− = − ρ(t)

|Ω−|
χΩ− ,

and then consider the solution (see Proposition 6.4.2) v0 : [0,∞)→ D(A) of the evolution
equation

v̈0(t) = ∆v0(t) + f(t)− Pf(t) t ≥ 0, v0(0) = v̇0(0) = 0.

The solution of (8.42) is easily recomposed as the sum

uhT = (u0 − Pu0) +mα + v0 = u0 +mf + v0.

Note that

u0 − Pu0 = (I − P )Lα ∈ C2
0([0,∞);YT ), mα ∈ C4

0([0,∞);M),

and
v0 ∈ C2([0,∞);H) ∩ C1([0,∞);V ) ∩ C([0,∞);D(A)),

which proves (8.43). The end of the proof is proposed as an exercise.
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Identification of uhT as the Galerkin solver. The next sequence of steps does not
vary from what we have repeatedly done in previous examples:

• By comparison with D ∗ [[γuhT ]]|BT , we show that

∂Tν u
h
T (t) = 0 0 ≤ t ≤ T + δ.

• With a similar argument, we show that we can define

ϕh(T ) := −[[γuhT ]](T ),

that ϕh ∈ C1([0,∞);H1/2(Γ)) and

ϕh(t) = −[[γuhT ]](t) t ≤ T + δ.

• Finally, we consider the function uhT (extension by zero to Rd \BT ) and show that

uhT (t) = (D ∗ Eϕh)(t) t < T + δ,

which closes the loop.

Theorem 8.5.2 (Mapping properties of the Galerkin solver forW). If α ∈ W1
+(R;H−1/2(Γ)),

then
D ∗ Ghϕ ∗ α ∈ C1

+(R;L2(Rd)) ∩ C+(R;H1(Rd \ Γ))

and therefore
Ghϕ ∗ α ∈ C+(R;H1/2(Γ)).

Moreover, for all t ≥ 0,

‖(D ∗ Ghϕ ∗ α)(t)‖1,Rd\Γ ≤ C (|ρ(t)|+H2(∂−1α, t |H−1/2(Γ))),

where

ρ(t) :=

∫ t

0

(t− τ)〈α(t), 1〉Γdτ.

8.6 Galerkin error operator

In this section the input is a causal H1/2(Γ)-valued distribution ϕ. We then consider the
causal solution of

ϕh ∈ Yh W ∗ (ϕh − ϕ) ∈ Y ◦h ,
and the associated potential

εh := D ∗ (ϕh − ϕ) = D ∗ Ehϕ ∗ ϕ,

which is characterized by the problem

εh ∈ TD(H1
∆(Rd \ Γ)),

ε̈h = ∆εh,

[[γεh]] + ϕ ∈ Y ◦h ,
[[∂νε

h]] = 0,

∂νε
h ∈ Yh.
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The results of this section are given without proof. The reader is suggested to check all
the results. After cut-off, the dynamical system triplet is the one of Section 8.5. The
lifting L : H1/2(Γ)→ YT is given by the solution of the variational problem:[

u0 ∈ H1
∂BT

(BT \ Γ), [[γu0]] + ϕ ∈ Y ◦h ,

(∇u0,∇v)BT \Γ + (u0, v)BT = 0 ∀v ∈ V,
(8.44)

yielding the bound (see (8.28))

‖Lϕ‖1,BT \Γ = |Lϕ|YT ≤ C†γ‖ϕ‖1/2,Γ

It is important to note that
PLϕ

(take v = χΩ− in (8.44)), which will eliminate the need of taking care of rigid motions
in the associated evolution problem in a bounded domain. Taking now ϕ ∈
C3

0([0,∞);H1/2(Γ)), defining
u0(t) := Lϕ(t),

and v0 : [0,∞)→ D(A) as the solution of

v̈0(t) = ∆v0(t) + L(ϕ(t)− ϕ̈(t)) t ≥ 0, v0(0) = v̇0(0) = 0,

we can build the function

εhT := u0 + v0 ∈ C2([0,∞);L2(BT )) ∩ C1([0,∞);H1(BT \ Γ)) ∩ C([0∞);YT ))

that solves

ε̈hT (t) = ∆εhT (t) ∀t ≥ 0,

γT ε
h
T (t) = 0 ∀t ≥ 0,

[[γεhT ]](t) + ϕ(t) ∈ Yh ∀t ≥ 0,

[[∂νε
h
T ]](t) = 0 ∀t ≥ 0,

∂νε
h
T (t) ∈ Y ◦h ∀t ≥ 0,

εhT (0) = ε̇hT (0) = 0.

Here are the resulting bounds for t ≥ 0:

‖εhT (t)‖1,BT \Γ ≤ C†γ(‖ϕ(t)‖1/2,Γ + ĉ(T )B(ϕ, t)),

‖ε̇hT (t)‖1,BT \Γ ≤ C†γ(‖ϕ̇(t)‖1/2,Γ +B(ϕ, t) +B(ϕ̇, t)),

‖∆εhT (t)‖BT \Γ ≤ C†γ(‖ϕ(t)‖1/2,Γ + 2B(ϕ̇, t)).

What is left follows the usual pattern of identification of the Galerkin error operator as
the extension εhT for t < T + δ and then use of a density argument to relax the continuity
hypotheses on the side of ϕ. This is the result that comes out of this process.
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Theorem 8.6.1 (Mapping properties of the Galerkin error operator for W). If ϕ ∈
W2

+(R;H1/2(Γ)), then

D ∗ Ehϕ ∗ ϕ ∈ C1
+(R;H1(Rd \ Γ)) ∩ C+(R;L2(Rd))

and therefore
Ehϕ ∗ ϕ ∈ C+(R;H1/2(Γ)).

Moreover, for all t ≥ 0

‖(D ∗ Ehϕ ∗ ϕ)(t)‖1,Rd\Γ ≤ C H3(∂−1ϕ, t |H1/2(Γ)).

Final remark. It is not difficult to show then that the bound of Theorem 8.6.1 is
actually an error estimate for Galerkin semidiscretization. If Πh : H1/2(Γ) → Yh is the
best approximation operator on Yh, then

‖uh(t)− u(t)‖1,Rd\Γ ≤ C H3(∂−1(ϕ− Πhϕ), t |H1/2(Γ)),

which follows from the fact that Ehϕ ∗ (ϕ− Πhϕ) = 0 for all ϕ.

8.7 Exercises

1. (Section 8.2) For the space Hh := {u ∈ H1(Rd \ Γ) : [[γu]] ∈ Yh}, prove that the
operator Hh → H1/2(Γ)→ Yh given by

u 7→ (γ−u, [[γu]])

is surjective.

2. (Section 8.2) Prove Lemma 8.2.1 (Hint. Use the identity

(∇u,∇v)Rd\Γ + (∆u, v)Rd\Γ = 〈[[∂νu]], γ−v〉Γ + 〈∂+
ν u, [[γv]]〉Γ

valid for all u ∈ H1
∆(Rd \Γ) and v ∈ H1(Rd \Γ), and apply the result ofthe previous

exercise.)

3. (Section 8.2) Prove (8.16).

4. (Section 8.2) Prove (8.20).

5. (Section 8.2) Compare the bound (8.21) with the result of estimating

‖Eh
ϕ(s)‖H1/2(Γ)→H1/2(Γ) ≤ 1 + ‖Gh

ϕ(s)‖H1/2(Γ)→H−1/2(Γ)‖W(s)‖H1/2(Γ)→H−1/2(Γ).

6. (Section 8.2) The Laplace domain bounds of Section 8.2 provide time domain bounds
for the Galerkin solver and error operator associated to the semidiscretization of the
equation W ∗ ϕ = α. Write them down.

7. (Section 8.4) Prove the bounds (8.30).

8. (Section 8.5) Prove the bounds of Proposition 8.5.1.

9. (Section 8.5) Prove Theorem 8.5.2.

10. (Section 8.6) Prove the results of Section 8.6.
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Chapter 9

Full discretization revisited

9.1 Convolution Quadrature in the Laplace domain

9.2 Examples of time domain techniques
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