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Introduction

These are classnotes for the

Tercera Escuela de Verano

Universidad de Concepción (Chile).
Although the course will be taught in Spanish, these notes have been prepared in English
to reach a wider audience and to encourage Spanish speaking students to read scientific
texts in English.

These notes are prepared so that the reader gets a feeling of what Boundary Element
Methods are and to have a taste of their analysis, which is, let us put it simply, a bit
hard. I firmly believe in understanding things first with an example and then organising
your ideas to have a wider view of the problem. If you come from a very Mathematically
oriented background, you will need faith to follow some of the steps, which are just
sketched. Make the effort and get yourself a general idea of what this is about. If then
you want to learn more, go for the many books on the subject. At the end I give some
references where you can go on.

Instead of doing the theory with Laplace’s equation, I’ve preferred to work with the
Helmholtz equation as an excuse to introduce some topics (Fredholm theory, compact
operators) and because Helmholtz fields are steady state waves that mix mathematics
and physics in an attractive way. The style is easy–going and I propose several exercises.
Most of them are quite simple and they are provided so that you are given some time to
handle with these mathematical objects.

1 The Helmholtz equation

Consider a complex number k such that Im k ≥ 0. The equation

∆u + k2u = 0

is called the Helmholtz equation. Usually k is called the wave number. Even if k2 ∈ R
we will always look for complex valued solutions to this equation. Notice that the
restriction to Im k ≥ 0 is immaterial, since what we are using is k2 and not k, so what we
are doing is restricting (arbitrarily) to one of the square roots.

Remark. When k = ı r, we obtain the following equation (I’ve changed signs to make it look
clearer):

−∆u + r2u = 0.

This is a typical elliptic equation, similar as those one obtains in reaction–diffusion systems.
This equation is usually called the Yukawa equation. Wave–oriented people find it bad taste to
call this equation the Helmholtz equation. More on this later. ¤

The most important appearance of the Helmholtz equation is in the study of time–
harmonic waves. Consider the wave equation

c2∆v = ρ vtt,

2



where c and ρ are positive numbers (again, that c is not negative is irrelevant, but ρ has
to be positive). A time–harmonic (or steady) solution to the wave equation is a solution
of the form:

v(x, t) = Re
[
u(x) e−ı t ω

]
= ure(x) cos(ω t) + uim(x) sin(ω t).

Remark. A physicist would write this in terms of a positive amplitude and a phase

v(x, t) = A(x) cos(ω (t− φ(x)) ), A ≥ 0.

Written in this way, one sees clearly that the solution is oscillating at the same frequency in
all points (ω is the frequency), but there is a different amplitude (maximum oscillation) and a
different phase (the time where oscillation reaches its maximum) in each point. Seeing things
as linear combinations of a sine and a cosine leads to a simpler mathematical statement: no
restriction on positivity for the amplitude; no angular redundancy for the phase; and, above all,
linearity! Notice also that u is not a proper amplitude, since it is not a positive real function; u

is called a complex amplitude. ¤

If a time–harmonic wave solves the wave equation, necessarily

c2∆u = −ρω2u

that is,

∆u + k2u = 0, k :=
√

ρ
ω

c
,

and u has to satisfy the Helmholtz equation. Notice that the wave number k is real,
proportional to frequency and inversely proportional to c (velocity of transmission in the
medium). It is also proportional to the square root of ρ (the density).

Exercise. Instead of the wave equation, consider the following equation:

c2∆v = ρ vtt + γ vt,

where γ, ρ > 0. If this equation has a time–harmonic solution, what steady–state equation has

to satisfy its amplitude? Write explicitly the wave number.

Remark. The equation in the exercise above is a wave equation with damping. The one–
dimensional case (one dimension in space) is called the telegrapher’s equation. When the wave
number in the Helmholtz equation has a non–trivial imaginary part, the medium is said to be
absorbing. The case k ∈ R is usually called the acoustic case. Notice also that high frequencies
correspond to high wave numbers: one usually speaks of high frequencies. However, when the
medium transmits waves very fast (c is large), high frequencies correspond to moderate wave
numbers. ¤

Exercise. Look for time–harmonic solutions to the heat equation: (κ, ρ > 0)

κ∆v = ρ vt
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How is the wave number in this case?

Exercise. Consider the Helmholtz equation

∆u + k2u = 0

in a bounded domain Ω. Prove that any classical boundary value problem (Dirichlet, Neumann)
can be given a variational formulation by means of the sesquilinear form

a(u, v) :=
∫

Ω
∇u · ∇v − k2u v.

If k2 = α + ı β with β > 0, prove that there exists θ and C > 0 such that

Re
[
eıθa(u, u)

]
≥ C‖u‖2

1,Ω, ∀u ∈ H1(Ω).

(here ‖ · ‖1,Ω is the classical H1(Ω)−norm).

2 Scattering

Let now Ω be a bounded domain in R3 with Lipschitz boundary Γ. Consider the exterior
of Ω, denoted Ω+. We fix a wave number k and consider the Helmholtz equation

∆u + k2u = 0, in Ω+.

Let us assume that we have a solution of the same equation in the whole of the space,
that is, a function uinc : R3 → C satisfying

∆uinc + k2uinc = 0, in R3.

The wave–field uinc is called an incident field, or more generally, the corresponding
wave is called an incident wave (recall that the complex amplitude defines a wave after
multiplication with the time–oscillating term).

Ω
Ω+

Γ

Ω
Ω+

Γ

For instance,
uinc(x) := eı k d·x, |d| = 1
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is an incident wave–field, corresponding to a plane wave. Then we decompose the total
complex amplitude (the unknown of our problem) as

u = uinc + uscat.

By linearity
∆uscat + k2uscat = 0, in Ω+,

that is, the scattered field is a solution to the Helmholtz equation with the same wave
number. The scattering measures the influence of the presence of the obstacle Ω in the
wave–field uinc.

Exercise. Prove that plane waves are solutions to the Helmholtz equation. What is the

corresponding incident wave in the time domain?

Exercise. If x0 is a fixed point in R3, prove that the function

uinc(x) :=
1
4π

eı k |x−x0|

|x− x0|
satisfies the Helmholtz equation in R3\{x0}. These incident waves are called point sources. In

general we will not demand that incident waves satisfy the Helmholtz equation in the whole

space (as plane waves do), but only on a volume including the obstacle (as point sources with

x0 ∈ Ω+ do).

Ω
Ω+

Γ
 x

0

We then have to give a boundary condition. The obstacle is called sound–soft when

u|Γ = 0

or, seeing uscat as unknown
uscat|Γ = −uinc|Γ.

Sound–hard bodies are those for which

∂νu|Γ = 0,

or equivalently
∂νuscat|Γ = −∂νuinc|Γ.

Here ∂ν is the normal derivative, where the normal vector points always outwards.
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The partial differential equation plus a boundary condition for uscat are not enough
since we are dealing with a problem in an unbounded domain. We will have to give some
kind of condition at infinity. This is what comes now.

Let us consider again the point source (spherical wave) defined in the last exercise,
taking the origin as source, i.e., the function

u =
1

4π

eı k r

r
, r = |x|.

Then

∂ru− ı k u = − 1

4π

eı k r

r2
,

which means that the leading term of the radial derivative of this function is ı k u. In the
time domain this corresponds to

Re
[ eı k r

4 π r
e−ı ω t

]
=

1

4 π r
cos(k r − ω t) =

1

4 π r
cos

(
k (r − ω

k
t)

)
.

Notice that ω/k is proportional to c (the factor is related to the density ρ). Notice also
that the process

µ(x) 7−→ µ(x− c t)

moves the (graph of the) function µ, c units to the right every unit of time, that is, µ is
moving rightwards at speed c.

ct

µ(x) µ(x−ct)

Coming back to
1

4π r
cos

(
k (r − ω

k
t)

)
,

this is a function moving radially outwards at speed ω/k ∼ c. Besides, the function is
itself oscillating in space: it is a cosine with decreasing amplitude (amplitude decreases
proportional to distance to the origin), the wave number being the number of oscillations
per space unit. Again: c is related to how fast the waves travel (speed) and k is related to
how oscillating it is. If one stays in a point, what one sees is an oscillation with frequency
ω, but if one moves with the oscillation, the perceived frequency is different. Complicated,
isn’t it?

If we consider instead the function

e−ı k r

4 π r
,
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or in the time domain,

Re
[e−ı k r

4 π r
e−ı ω t

]
=

1

4 π r
cos(k r + ω t),

we obtain an incoming wave, travelling from infinity to the origin. The outgoing wave
satisfies the condition

lim
r→∞

r (∂ru− ı k u) = 0.

This limit is uniform in all directions. This is usually written

∂ru− ı k u = o(r−1), r →∞
(with the implicit understanding that a radial limit is uniform along all radii). The
incoming wave does not satisfy this condition. This condition at infinity is usually called
the Sommerfeld radiation condition.

The full scattering problem is written in terms of the scattering amplitude (we call it
simply u ≡ uscat): we impose the Helmholtz equation in the exterior of the obstacle

∆u + k2u = 0, in Ω+,

the Sommerfeld radiation condition

∂ru− ı k u = o(r−1), r →∞.,

a Dirichlet boundary condition
u|Γ = g0

if the obstacle is sound–soft (g0 = −uinc|Γ) or a Neumann boundary condition

∂νu|Γ = g1

if the obstacle is sound–hard (g1 = −∂uinc|Γ).
Recall that the true unknown of the problem is the total complex amplitude u + uinc,

but we will always consider the amplitude of the scattered wave as unknown.

Remark. In scattering problems, typically right–hand sides are smooth functions restricted
to the boundary (why solutions to the Helmholtz equation are smooth is a question we will
deal with later on). However, both theory and numerics are always worked out with general
right–hand sides. As incident waves one considers mainly plane waves and point sources placed
on points outside the obstacle. ¤

There are also some other interesting problems related to scattering with more com-
plicated boundary or transmission conditions. One of them, of great relevance when we
move from acoustic to electromagnetic waves, is the use of impedance conditions, of the
form

∂νu + λu = g.

Helmholtz transmission problems stem from situations when the wave is transmitted inside
the obstacle, which has different material properties (density and speed of transmission
of waves).
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3 Single–layer acoustic potentials

Let us consider the following function:

φ(x,x0) :=
eı k |x−x0|

4π |x− x0| .

This function (of 2 × 3 variables) is called the outgoing fundamental solution to the
Helmholtz equation, because it satisfies

∆φ( · ,x0) + k2φ( · ,x0) = δx0

(we will propose a proof of this in a forthcoming exercise) and the Sommerfeld radiation
condition at infinity. If we place a finite number of point sources on Γ (xj ∈ Γ, ∀j), with
different charges/masses ψj, its superposition

∑
j

φ(x,xj)ψj =
∑

j

eı k |x−xj |

4π |x− xj| ψj,

also satisfies the Helmholtz equation in Ω+ together with the Sommerfeld radiation con-
dition. The basic idea is to convert this sum into an integral by using a density ψ : Γ → C
and proposing

∫

Γ

φ(x,x0)ψ(x0)dγ(x0) =

∫

Γ

eı k |x−x0|

4π |x− x0|ψ(x0)dγ(x0)

as a candidate to solve our scattering problem:

∆u + k2u = 0, in Ω+,

∂ru− ı k u = o(r−1), r →∞
u|Γ = g0.

Notice (prove it!) that it satisfies automatically the differential equation and the radiation
condition. What is left to impose is the boundary condition. But first, some nomenclature:
the function (or class of functions)

(SΓψ)(x) :=

∫

Γ

φ(x,x0)ψ(x0)dγ(x0) =

∫

Γ

eı k |x−x0|

4π |x− x0|ψ(x0)dγ(x0)

is called a single–layer potential and ψ is called the density.

Exercise. Let ϕ ∈ D(R3) and φ0(x) := eı k |x|/(4π |x|). Prove that

∫

R3

φ0(∆ϕ + k2ϕ) = lim
ε→0

∫

∂B(0;ε)
(∂rφ0)ϕ− φ0(∂rϕ).

Write down the explicit expression for

∂rφ0|∂B(0;ε) and φ0|∂B(0;ε).
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Use them to prove that

lim
ε→0

∫

∂B(0;ε)
(∂rφ0) ϕ = ϕ(0)

and that

lim
ε→0

∫

∂B(0;ε)
φ0(∂rϕ) = 0.

Conclude that
∆φ0 + k2φ0 = δ0, in D′(R3).

Deduce that
∆φ( · ,x0) + k2φ( · ,x0) = δx0 , in D′(R3).

Remark. Since we are solving the exterior problem, we could think of using a potential
generated with a density defined on the whole of the obstacle, not only on its boundary, that is,
something of the form ∫

Ω
φ(x,x0)ψ(x0)dx0.

Electrostatics (formally the case k = 0) say clearly that we shouldn’t do this: in the equilibrium
charges are placed on the boundary. Mathematically this is a bit more complicated and you
have to go to deep results of potential theory to prove that trying to solve our problem with a
potential defined on the obstacle leads to a (distributional) solution supported on the boundary.
Anyway, from our point of view, we are only trying with a class of functions. The fact that the
class will be large enough to include a solution will be sufficient for us. ¤

Remark. Another possibility would be considering a surface (or a volume) Γ0 strictly con-
tained in the obstacle and trying a potential from there:

SΓ0ψ.

Notice that on Γ (the true boundary of the scatterer) this function is very smooth. Imposing
the boundary condition is extremely simple

∫

Γ0

φ(x,x0)ψ(x0)dγ(x0) = g0(x), x ∈ Γ.

The approach looks correct but leads to a very ill–posed problem. But a very interesting problem
though! If we change the point of view, assuming that Γ0 is the boundary of the scatterer and
that we have information on a surface surrounding the obstacle Γ, then we are dealing with
a problem of acoustic holography, one of the simple–to–state but difficult–to–solve ill–posed
problems of acoustics. We will not look further into this issue. ¤

We go then back to the definition of the potential

u := SΓψ :=

∫

Γ

φ( · ,y)ψ(y)dγ(y),

9



and notice again that
u ∈ C∞(R3\Γ)

∆u + k2u = 0, in Ω ∪ Ω+ = R3\Γ
and that u is an outgoing wave–field (u satisfies the Sommerfeld condition at infinity). To
simplify things, assume now that Γ and ψ are as smooth as you need them to be for what
is coming. A simple argument using Lebesgue’s theorem (the dominated convergence
theorem) proves that the following limit exists

lim
x→x±0

(SΓψ)(x) =

∫

Γ

φ(x0,y)ψ(y)dγ(y),

i.e., the same expression (now with an isolated singularity in the integrand; we are not
integrating something smooth anymore) gives the interior (denoted with the sign −) and
exterior (+) limits of the potential on the boundary. If we take the difference of the
normal derivatives from inside and outside, we find this other fact (ν(x0) is the normal
vector at x0 pointing outwards)

(∂−ν SΓψ)(x0)− (∂+
ν SΓψ)(x0) = lim

x→x+
0

∇SΓψ(x) · ν(x0)− lim
x→x−0

∇SΓψ(x) · ν(x0) = ψ(x0),

which means that ψ is the jump of the normal derivative of the potential. Notice that the
gradient is continuous (formally at least) in tangential directions, which means that the
discontinuity of the gradient of the potential when approaching the boundary is a normal
field proportional to density.

Remark. If we were dealing with electrostatics we would say that electric charges create
continuous potentials but discontinuous electric fields. ¤

Then we define the single–layer operator

(VΓψ)(x) :=

∫

Γ

φ(x,y)ψ(y)dγ(y), x ∈ Γ.

You can be wondering now: but was this not SΓψ? In a way it was, but there is an
important difference. Given a density ψ : Γ → C, SΓψ is a function defined on the whole
of R3 (a priori, we are interested only in Ω ∪ Ω+ or even only on Ω+), whereas VΓψ is a
function defined on Γ. In fact, VΓψ is the value on Γ of SΓψ. We recall names again: SΓψ
is a single–layer potential and VΓψ is a single–layer operator. The important thing is
not the name or the letter we use (you’ll find all kind of possibilities in the literature),
but the concept: one is the field defined in the space, the other is a function defined in
the same surface as the density. The operator

ψ 7−→ VΓψ :=

∫

Γ

φ( · ,y)ψ(y)dγ(y)

is a linear integral operator. It is the first occurrence of what we call a boundary integral
operator. We finally close the circle. The problem: find a density ψ such that

VΓψ = g0 in Γ
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and then define
u := SΓψ

is a boundary integral method. One first solves an integral equation and then inputs its
solution in a potential expression. An integral equation involving a boundary integral
operator is called a boundary integral equation (BIE for short). Notice that after
solving this BIE, we have obtained a solution of the exterior Dirichlet problem for the
Helmholtz equation and that this solution is defined by means of a potential. The fact that
we used an artificial device as a single–layer potential, where a non–physical quantity (the
density) is involved, justifies why this kind of approach is called an indirect method.

Exercise. Prove that if ψ ∈ L1(Γ), both SΓψ and VΓψ are well defined. Prove also the

limiting expressions on Γ for SΓψ and its gradient.

4 The Sobolev setting

Remark. If you are an engineer, you would be willing to have some numbers (a discretization)
as fast as possible. Skip this section and move on to finding a numerical scheme. But then come
back here, even if you have to ignore the difficult parts with all the Sobolev spaces, because there
are some non–trivial solvability questions to be taken into account. Non–trivial and important.
¤

Recall first your Sobolev spaces. H1(Ω) is the classical Sobolev space of order one (its
elements and their first distributional derivatives are in L2(Ω)). The norm of H1(Ω) is
denoted ‖ · ‖1,Ω and the one of L2(Ω) = H0(Ω) as ‖ · ‖0,Ω. H1/2(Γ) is the trace space.
The trace operator

γ : H1(Ω) → H1/2(Γ)

is continuous and onto. Since the inclusion

H1/2(Γ) ⊂ L2(Γ)

is dense and continuous, we can add the dual space of H1/2(Γ) to the other side of this
inclusion and obtain something like

H1/2(Γ) ⊂ L2(Γ) ⊂ H−1/2(Γ).

In this way, H−1/2(Γ) is the dual space to H1/2(Γ) (the set of continuous linear maps from
H1/2(Γ) → C), seen in a way such that any g ∈ L2(Γ) defines an element of H−1/2(Γ) by
means of the expression

H1/2(Γ) 3 ϕ 7−→
∫

Γ

g(y) ϕ(y)dγ(y),

and this element (a bounded linear functional H1/2(Γ) → C) is also called g. The duality
product will be denoted

〈g, ϕ〉Γ.
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A priori g ∈ H−1/2(Γ) and ϕ ∈ H1/2(Γ), but if g ∈ L2(Γ) (which is a proper dense subset
of H−1/2(Γ) with the identification above), this is just

〈g, ϕ〉Γ =

∫

Γ

g(y) ϕ(y)dγ(y).

We are not going to dive very deep into this, since this course is introductory. Nevertheless,
if you are really willing to understand the mathematics of boundary elements, there is no
way round.

Remark. A triple V ⊂ H ⊂ V ′ defined as above (the key is that the injection of V into H is
continuous and dense) is called a Gelfand triple or Courant triple (or triad). ¤

The weak normal derivative is defined as follows: if u ∈ H1(Ω) and ∆u ∈ L2(Ω), then
the expression ∫

Ω

∆u v +

∫

Ω

∇u · ∇v

is a continuous function of the trace of v ∈ H1(Ω) (not of v itself). Thus, we define

〈∂νu, ϕ〉Γ :=

∫

Ω

∆u v +

∫

Ω

∇u · ∇v

where v is any element of H1(Ω) such that γv = ϕ. Maybe it looks simpler if we write it
as follows

〈∂νu, γv〉Γ :=

∫

Ω

∆u v +

∫

Ω

∇u · ∇v, ∀v ∈ H1(Ω).

Then ∂νu ∈ H−1/2(Γ) and

‖∂νu‖−1/2,Γ ≤ C
[
‖∇u‖0,Ω + ‖∆u‖0,Ω

]
.

It is not very obvious at first sight, but to define ∂νu on Γ we only need that ∇u and ∆u
are in L2 in a region near the boundary Γ, since distant parts of the domain do not play
any role in the definition.

We are going to need a new set. We say that

u ∈ H1
loc(Ω

+)

if the restriction of u to any bounded open subset of Ω+ (possibly touching the boundary
Γ) is in H1. This local space keeps functions with locally H1 behaviour, ignoring the
rate of decay at infinity necessary to have square–integrability. Since the trace operator
is local, we can define the exterior trace

γ : H1
loc(Ω

+) → H1/2(Γ).

Also we can define the exterior normal derivative for functions in H1
loc(Ω

+) whose laplacian
is in L2

loc(Ω
+).
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Remark. The exterior trace is the same as the interior trace operator, but for functions
defined on the other side of the boundary. It is, let me emphasize this, the same operator. The
same thing applies for the exterior normal derivative. The key to a good understanding of these
operators is that, even if their definition looks global (it is done in an operational way), finally
the operators are local, taking into account what happens around the boundary and not far
from it. ¤

Remark. The notation H1
loc(Ω+) is the correct one. I’d be tempted to write the simpler

form H1
loc(Ω

+), but what this really means is local H1 behaviour strictly inside Ω+, that is, not
only ignoring the infinity but also the limits on Γ. A very smooth function with a very strong
singularity on Γ belongs to H1

loc(Ω
+) but not to H1

loc(Ω+). ¤

Theorem For arbitrary ψ ∈ H−1/2(Γ),

SΓψ ∈ H1(Ω)×H1
loc(Ω

+),

is an outgoing solution of ∆u + k2u = 0. The interior and exterior traces coincide

γ(SΓψ) = VΓψ

and the gradient has a jump in the normal direction:

∂−ν SΓψ − ∂+
ν SΓψ = ψ.

Finally,
VΓ : H−1/2(Γ) → H1/2(Γ)

is linear and bounded.

Remark. Notice that for any x ∈ R3\Γ, the potential can be defined by duality

(SΓψ)(x) = 〈ψ, φ(x, · )〉Γ.

The smooth part of the proposition above (that this function satisfies the Helmholtz equation
plus the Sommerfeld radiation condition at infinity) can be proven with very classical arguments.
The part related to traces and normal derivatives requires a higher level of analysis. ¤

Uniqueness for boundary value problems for the Helmholtz equation is not straight-
forward. This is what can be obtained.

• The exterior problem has uniqueness of radiating solution:

∆u + k2u = 0, in Ω+,

∂ru− ı k u = o(r−1), r →∞
u|Γ = 0

implies that u ≡ 0
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• There is a sequence of eigenvalues for which the interior problem has no unique
solution, i.e.,

∆u + k2u = 0, in Ω,

u|Γ = 0

implies that u ≡ 0 if and only if −k2 is not a Dirichlet eigenvalue of the Laplacian
in Ω.

• The Dirichlet eigenvalues of the Laplace operator form a sequence of numbers

0 < k2
1 < k2

2 < . . . < k2
n < . . . →∞

for which the problems

−∆u = k2
nu, in Ω,

u|Γ = 0

have non–unique solution. To each eigenvalue corresponds a finite dimensional
eigenspace.

Remark. One can say a lot more about the Dirichlet eigenvalues and eigenfunctions of the
Laplacian. For instance, the first eigenvalue is simple. Also, taking an L2(Ω)−orthonormal basis
of each eigenspace we obtain a Hilbert basis of L2(Ω). Upon normalization this basis is also a
Hilbert basis of H1

0 (Ω). This is precisely the origin of the method of separation of variables that
can be found in any classical text of differential equations. ¤

Assume now that
VΓψ = 0.

Defining u := SΓψ, we have

∆u + k2u = 0, in Ω+ ∪ Ω,

∂ru− ı k u = o(r−1), r →∞
u|Γ = VΓψ = 0

and therefore u+ ≡ 0. If −k2 is not a Dirichlet eigenvalue of the Laplacian (in the interior
of the obstacle), then u− ≡ 0. Hence

ψ = ∂−ν u− ∂+
ν u = 0,

and we just proved that VΓ is injective.
If on the other hand, −k2 is a Dirichlet eigenvalue of the Laplace operator, and we

take 0 6= ξ such that

−∆ξ = k2ξ, in Ω,

ξ|Γ = 0,
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then ψ = ∂νξ 6= 0. The reason why a non–trivial Dirichlet eigenfunction of the Laplace
operator cannot be at the same time a Neumann eigenfunction, i.e., why

−∆ξ = k2ξ, in Ω,

ξ|Γ = 0,

∂νξ|Γ = 0,

=⇒ ξ ≡ 0

will be derived from a result we will see in a forthcoming section. With precisely that
result it is possible to see that VΓψ = 0.

The preceding (formal) argument proves that

VΓ is injective ⇐⇒ −k2 is not a Dirichlet eigenvalue of ∆ in Ω.

In particular, when k2 has non–trivial imaginary part (the medium is absorbing), VΓ is
injective.

Remark. Invertibility of VΓ can be trivially used to show existence of solution to the exterior
Helmholtz problem with Dirichlet condition. Then the remaining point is showing invertibility
(surjectivity!) of VΓ, which follows a more complicated path. We’ll sketch the proof in due time.
Anyway, you will definitely not learn here all the details of the proofs and I’ll be very careful to
hide some complicated facts. ¤

As mentioned, if VΓ : H−1/2(Γ) → H1/2(Γ) is invertible we can solve the exterior
Helmholtz equation (the sound–soft scattering problem)

∆u + k2u = 0, in Ω+,

∂ru− ı k u = o(r−1), r →∞
u|Γ = g

for arbitrary g ∈ H1/2(Γ) as follows: first we solve the integral equation on Γ

VΓψ = g

and the we input ψ in the potential expression

u = SΓψ

to obtain the solution of the scattering problem. By looking at the integral equation
(formally; in truth ψ is not a function)

(VΓψ)(x) :=

∫

Γ

φ(x,y)ψ(y)dγ(y) = g(x), x ∈ Γ

we observe the very non–local character of the equation, that is, the value of ψ in some
region influences the value of VΓψ in the whole of Γ.
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5 Discretization

We begin by showing the simplest Galerkin scheme for the integral equation

(VΓψ)(x) =

∫

Γ

φ(x,y)ψ(y)dγ(y) = g(x), x ∈ Γ.

Let us decompose the boundary Γ into a finite set of curved patches

Γ = ∪{Γi | i = 1, . . . , N}
with trivial overlappings: Γi ∩ Γj is one–dimensional for i 6= j. We point out that we are
looking for ψ in the space H−1/2(Γ) and that

L2(Γ) ⊂ H−1/2(Γ).

This implies that we will not need any degree of continuity in the discrete space here.
Consequently, we can work with basically any partition of the boundary in curved polygons
without the classical rules of either–full–sides–or–vertices match of finite element spaces.
A traditional triangulation of the surface is however the typical choice.

Remark. A highly non–trivial question when we are dealing with triangulations of surfaces
is what do we consider as a triangulation and how can we manage the fact that we usually
lack a parameterization valid for the whole surface. The following is a theoretical setting which
corresponds to what we usually find in practice. Related to the real boundary Γ there is a closed
polyhedron Γ̂ and a bijection

η : Γ̂ → Γ

which is: (a) continuous; (b) globally Lipschitz with globally Lipschitz inverse ; (c) smooth
(for instance C2) on each face of the polyhedron Γ̂. The second hypothesis means that we can
estimate distances on the surface (geodesic distances) by distances on the polyhedron or by
joining points through the three–dimensional space. The estimate can be bad but does not
degenerate. The polyhedron is composed of M polygonal faces {P1, . . . , PM} and their images
{η(Pn)|n = 1, . . . , M} define a level zero partition of Γ. We do not plan to discretize here. Then
we can define a triangulation of the polyhedral surface Γ̂ in the usual triangles or quadrilaterals
with the common rules (not really necessary here, but...). These planar elements on the straight
faces are then mapped onto the surface and define the partition of the surface. ¤

Instead of a generic density ψ : Γ → R we take ψh : Γ → R such that

ψh(x) ≡ ψj, x ∈ Γj,

that is, ψh is constant on each element. Then

(VΓψn)(x) =

∫

Γ

φ(x,y)ψh(y)dγ(y)

=
N∑

j=1

∫

Γj

φ(x,y)ψh(y)dγ(y)

=
N∑

j=1

[ ∫

Γj

φ(x,y)dγ(y)
]
ψj.
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Obviously VΓψh will not match g everywhere. We only demand that the average value of
both functions on each element Γi coincide, that is, we demand that

∫

Γi

(VΓψh)(x)dγ(x) =

∫

Γi

g(x)dγ(x), i = 1, . . . , N

or equivalently

N∑
j=1

[ ∫

Γi

[ ∫

Γj

φ(x,y)dγ(y)
]
dγ(x)

]
ψj =

∫

Γi

g(x)dγ(x), i = 1, . . . , N,

which is an N×N linear system, whose unknowns are the values of the piecewise constant
density on the elements.

To avoid an excess of parentheses we will always adopt the following convention

∫

A

∫

B

f(x,y)dγ(x)dγ(y) :=

∫

A

(∫

B

f(x,y)dγ(y)

)
dγ(x),

that is, the variables and sets of integration are given in the same order.

Exercise. Let

aij :=
∫

Γi

∫

Γj

eı k |x−y|

4π|x− y|dγ(x) dγ(y)

be the matrix of the linear system above. Prove that it is symmetric but non–hermitian in

general. For which values of k is this matrix hermitian? Notice that a priori aij 6= 0 for all i, j.

The method we just described can be easily understood as a Galerkin method.
First, remark that

VΓψ = g

is equivalent to
〈VΓψ, ϕ〉Γ = 〈g, ϕ〉Γ, ∀ϕ ∈ H−1/2(Γ).

The angled brackets 〈 · , · 〉Γ represent the duality of H−1/2(Γ) on H1/2(Γ). In this case,
the second component is the element of H−1/2(Γ) (the dual space) and the first is the
element of H1/2(Γ) (the primal space).

We can then define a bilinear form a : H−1/2(Γ)×H−1/2(Γ) → C

a(ψ, ϕ) := 〈VΓψ, ϕ〉Γ
and a linear form ` : H−1/2(Γ) → C

`(ϕ) := 〈g, ϕ〉Γ
and write the whole problem as a typical variational problem in the Hilbert space H−1/2(Γ)

ψ ∈ H−1/2(Γ), a(ψ, ϕ) = `(ϕ), ∀ϕ ∈ H−1/2(Γ).
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The bilinear and the linear forms are continuous. Notice also that the bilinear form can
be formally written as

∫

Γ

∫

Γ

φ(x,y) ψ(y) ϕ(x)dγ(x) dγ(y),

that is, it involves a double integral on Γ.

Remark. This is not properly a variational formulation in the sense you will have found in
elliptic PDE theory and finite element implementations, since we have not moved derivatives
from the original equation to the tests. It is simply a straightforward testing of an integral
equation. This is a common feature to most boundary integral equations. In some equations,
however, after this straightforward testing, we apply some identities to rewrite the bilinear form
without changing the regularity requirements of the unknown though. ¤

If we define now
Xh := {ψh : Γ → R |ψh|Γj

∈ P0, ∀j}
where P0 is the space of constant functions (polynomials of degree zero), then we can
define a Galerkin scheme by

ψh ∈ Xh, a(ψh, ϕh) = `(ϕh), ∀ϕh ∈ Xh.

Exercise. Prove that this Galerkin scheme is equivalent to the method we derived before.
Why can we properly write

a(ψh, ϕh) =
∫

Γ

∫

Γ
φ(x,y) ψh(y) ϕh(x) dγ(x) dγ(y)

without needing duality products?

Assume again that we approximate ψ by ψh ∈ Xh. Instead of requiring that VΓψh and
g have equal averages on the elements, we do the following: we choose a point xi ∈ Γi on
each element; we demand that

(VΓψh)(xi) = g(xi), i = 1, . . . , N.

The method thus derived is called a collocation method. The points {xi} are called
collocation nodes.

Exercise. Write this method as an equivalent system of linear equations. Is the corresponding

matrix symmetric?

Remark. Generally speaking engineers prefer the collocation method to the Galerkin method.
The essential reason is that we have simpler integrals to compute or approximate and that the
deduction is somewhat simpler in the sense that we are neither averaging on the cells nor
considering an intermediate variational formulation. ¤

There are however some aspects (pros and cons) to be taken into account:
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• Not every choice of collocation nodes is going to work. For instance, taking a vertex
per triangle is not a judicious choice.

• There is not a satisfactory theory for this method working even for smooth surfaces.
This should not worry too much a practitioner of the method: most people are
convinced that the theory will arrive in due time. However, the Galerkin setting
gives more confidence to mathematically (or theoretically) oriented users of the
boundary element method.

• If g has discontinuities, where one places nodes is also relevant.

• In some instances, practitioners of the method use many more collocation nodes
than elements and solve the (incompatible) equations by mean squares. This has
the advantage that we have to solve a Hermitian positive definite system. If we are
going to use conjugate gradient iterates we don’t even have to create the normal
matrix A∗A. There is a big drawback to this nevertheless. The conditioning of
the systems we have obtained is not very good (it is not dramatically bad) and
the normal equations have it squared, which makes everything worse–off by making
iterative methods far too slow. The other point in favour of taking many more
collocation points than elements (two or three per element) is that maybe a subset
of them is stable and compensates the bad choice of other sets. My point here is
then: don’t do this!

Sometimes, one sees in texts the collocation method written in a variational form as

ψh ∈ Xh, 〈VΓψh, δi〉Γ = 〈g, δi〉Γ, i = 1, . . . , N

or even as a Petrov–Galerkin method

ψh ∈ Xh, 〈VΓψh, ρh〉Γ = 〈g, ρh〉Γ, ∀ρh ∈ Yh = span{δi | i = 1, . . . , N}

where Yh is the space of linear combinations of the Dirac delta distributions δi on the
collocation nodes xi. One has to take this with more than a bit of salt. It is formally
okay and makes the method look a particular case of the Petrov–Galerkin method, but
the angled brackets are not really correct and one is in fact using a far more complicated
theoretical setting.

In Section 8 we will work a bit more on the matrices for the Galerkin and collocation
method as well as proposing a method based on point sources.

6 Theoretical aspects: the continuous case

The theory of boundary integral formulations and boundary element methods is based
both on the well–known elliptic theory and in the Fredholm theory, which is in a way the
branch of functional analysis that studies the effect of compact perturbations to operator
equations. Let us first expose the main results concerning this theory at the continuous
level. For the next section we leave the effect of compact perturbations at the discrete
level.
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Let H1 and H2 be Hilbert spaces. A linear operator K : H1 → H2 is compact if any
of the three following equivalent conditions hold:

(a) K transforms weakly convergent sequences into strongly convergent sequences.

(b) If (ψn) is a bounded sequence in H1, then the image sequence (Kψn) has a convergent
subsequence.

(c) There exist two orthonormal sequences, (ψn) in H1 and (ϕn) in H2, and a sequence
of positive numbers σn → 0 such that

K =
∑

n

σn( · , ψn) ϕn,

where the bracket denotes the inner product in H1 and convergence of the series
holds in operator norm.

In the last characterization, the sum can be limited to a finite number of terms, in which
case the operator is called degenerate or of finite rank.

Remark. That these three characterizations are equivalent is not obvious at all and requires
some effort of applying well–known but strong results of Hilbert space theory. It is not very
difficult to prove that (b) is equivalent to: The image of any bounded set is relatively compact,
that is, has a compact closure. This formulation allows for extensions of the definition to Banach
or even normed spaces, and also to non–linear operators. Characterizations (a) and (c) are
Hilbertian in essence. The series decomposition in (c) is called the Singular Value Decomposition
of K and shows very clearly the ill–posed character of equations of the form Kψ = ϕ. ¤

From the point of view of what we are doing, the most important result of this theory
is the following.

Theorem Let H be a Hilbert space and K : H → H be compact. Then:

I + K is injective ⇐⇒ I + K is surjective.

In this case, the inverse of I + K is bounded.

Remark. The last part of the theorem is of general application for any bounded invertible
operator between Hilbert spaces: its inverse is always bounded. This result holds in Banach
spaces, where it is often called the Banach isomorphism theorem, and it is a consequence
of a more general result called the Banach open mapping theorem. You can find this type
of result in any book of basic functional analysis. ¤

Exercise. Let H1,H2 and H3 be Hilbert spaces. Prove the following results:

(a) If A : H1 → H2 is bounded and K : H2 → H3 is compact, then K A : H1 → H3 is
compact. (Hint. Use characterization (b) of compactness). If A : H1 → H2 is bounded
and K : H3 → H1 is compact, then AK : H3 → H2 is compact.
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(b) If A : H1 → H2 is bounded and inversible and K : H1 → H2 is compact, then

A + K is injective ⇐⇒ A + K is surjective.

Remark. The theorem we enounced above is the first part of a very important result in
functional analysis with huge relevant applications to elliptic theory, even if it does not look like
that at first sight. The theorem is called the Fredholm alternative and, in its simplest form,
states the following. If K : H → H is compact then:

either I + K is invertible with continuous inverse,

or ker(I + K) is finite dimensional and im(I + K)> has the same finite dimension.

In the second case, there exist ψ1, . . . , ψN linearly independent (a basis of the orthogonal com-
plement of im(I + K)⊥ such that the equation

ψ + Kψ = ϕ

is solvable if and only if ϕ is orthogonal to ψi for all i. ¤

The final definition of this theory is given also in a set of equivalent characterizations.
Let again H1 and H2 be Hilbert spaces. A bounded linear operator V : H1 → H2 is a
Fredholm operator (short for a Fredholm operator of index zero) if any of the following
equivalent conditions hold:

(a) dim(kerV ) = dim(imV )⊥ < ∞.

(b) There exists W : H2 → H1 bounded and invertible such that W V − I is compact.

(c) There exists W : H1 → H2 bounded and invertible such that V −W is compact.

In the jargon used by people who use this theory one simply says that an operator is
Fredholm, instead of saying that an operator is a Fredholm operator.

If V is Fredholm (of index zero), then

V is injective ⇐⇒ V is surjective.

Remark. In fact, there exist Fredholm operators of other indices (since we will just be dealing
with index zero, we are going to ignore this). Fredholm operators are those for which dim(kerV )
and dim(imV )⊥ are finite. The difference between these numbers is called the index. Instead
of using the quantity dim(imV )⊥, it is common to use the co–dimension of imV , which is the
dimension of any supplementary subspace to imV . ¤

Finally, let us mention how all this applies to our theory. Consider the operator
V0 : H−1/2(Γ) → H1/2(Γ) defined by

(V0ψ)(x) :=

∫

Γ

1

4 π |x− y|ψ(y)dγ(y).

This operator corresponds formally to that case k = 0, which gives the Laplace equation.
I say formally, because the case k = 0 is a singular case in all this theory and does
not follow easily as a limit of the remaining cases. The two important facts about this
operator are:
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• V0 is elliptic, that is, there exists α > 0 such that

〈V0 ψ, ψ〉Γ ≥ α‖ψ‖−1/2,Γ, ∀ψ ∈ H−1/2(Γ).

• VΓ − V0 is compact.

Hence, VΓ is Fredholm of index zero and we have that

VΓ is injective ⇐⇒ VΓ is surjective.

Moreover, we can write VΓ = V0 + (VΓ − V0) and therefore we have a decomposition

VΓ = V0 + K,

where V0 is elliptic and K is compact. This will be relevant in the numerical approxima-
tion.

We now can collect the pieces so far:

• We had begun with the exterior scattering problem

∆u + k2u = 0, in Ω+,

∂ru− ı k u = o(r−1), r →∞
u|Γ = g.

A priori g = −uinc on Γ, but we had widened our interest to arbitrary data in
the trace space: g ∈ H1/2(Γ). The problem with g = 0 only admitted the trivial
solution, so we have uniqueness.

• Our proposal to solution was a single–layer acoustic potential

u := SΓψ =

∫

Γ

eı k | · −y|

4 π | · −y|ψ(y)dγ(y).

This expression gives also a definition of solution inside the obstacle. (By the way,
if you really can sound as if you know your business with boundary integral formu-
lations, you don’t give a proposal of solution; you give an ansatz, which is German
for proposal).

• We have proved that u = SΓψ solves the scattering problem if and only if VΓψ = g,
that is ∫

Γ

eı k |x−y|

4 π |x− y|ψ(y)dγ(y) = g(x), x ∈ Γ.

(The equation has to be understood with the integral operator in a weak sense,
ψ ∈ H−1/2(Γ) and holding almost everywhere in Γ).

• The operator VΓ is injective if and only if −k2 is not a Dirichlet eigenvalue of the
Laplace operator in the interior domain. Injectivity was a consequence of uniqueness
of the exterior (always) and interior (with the exception of eigenvalues!) boundary
value problems.
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• Hence, except in the singular cases, VΓ is invertible. Therefore we can give a solution
(the unique solution) of the exterior scattering problem.

The preceding argument furnishes a proof of existence of solution of the exterior scat-
tering problem except for some values that correspond to interior Dirichlet eigenvalues.
The usual proof for existence uses this kind of argumentation, only with a more compli-
cated potential (ansatz) that does not fail to be invertible for some wave numbers.

Before going any further, let us examine what happens with more than one obstacle.
Two will be enough. Assume that the obstacle is not a single domain, but the union of
two disjoint domains Ω1 and Ω2 with boundaries Γ1 and Γ2. All the integrals over Γ can
be decomposed ∫

Γ

=

∫

Γ1

+

∫

Γ2

.

Let gi := g|Γi
∈ H1/2(Γi). Consider the following operators

Vijψ :=

∫

Γi

φ( · ,y)ψ(y)dγ(y) : Γj → C, i, j = 1, 2.

The notation is taken so that Vij goes from Γi to Γj. The density of the potential is
generated in Γi and observed in Γj. This is is very similar to what we had in numerical
approximation, but here Γ1 and Γ2 are closed disjoint surfaces.

Exercise. In the notations above, answer these questions:

(a) When are Vii inversible?

(b) Using that the inclusion of H1(Γi) into H1/2(Γi) is compact, prove that V12 and V21 are
compact.

(c) If ψi ∈ H−1/2(Γi), prove that
u = SΓ1ψ1 + SΓ2ψ2

solves the sound–soft scattering problem exterior to Ω1 ∪ Ω2 is and only if

[
V11 V12

V21 V22

] [
ψ1

ψ2

]
=

[
g1

g2

]
.

(d) Prove that [
V11 V12

V21 V22

]

is Fredholm as an operator H−1/2(Γ1)×H−1/2(Γ2) → H1/2(Γ1)×H1/2(Γ2).

(e) Prove that if V11 and V22 are invertible, then the whole matrix of operators is invertible.

This looks new but follows directly from the theory by admitting Γ not to be a single
surface but a set of boundaries of non–intersecting domains (one surface enclosed by
another gives a very different problem though!). The point is that Dirichlet eigenvalues
in Ω1 ∪Ω2 are those of Ω1 and those of Ω2, since the problems are completely decoupled.
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One can arrange (theoretically) the system of boundary integral equations

[
V11 V12

V21 V22

] [
ψ1

ψ2

]
=

[
g1

g2

]

by ’multiplying’ each row by V −1
ii , obtaining thus,

ψ1 + V −1
11 V12ψ2 = V −1

11 g1,

V −1
22 V21ψ1 + ψ2 = V −1

22 g2.

Iterations to this formal system (that is, Jacobi iterations to the first system) involve
solving scattering problems exterior to each domain, not to the group of both obstacles.
This is the origin of a technique often used by physicists and called multiple scattering.
Each object reacts to the scattering produced by others. You can always think in the
following terms: densities emit a time–harmonic wave from each Γi; the operators Vij

with i 6= j correspond to emissions from Γi heard in Γj; the operators V −1
ii are the

reactions of each obstacle to emissions (something is received in Γi and the boundary
emits something just to compensate). Iterations happen till an asymptotic equilibrium is
reached. Even if you are not going to use this kind of iterations, acquiring this language
will help you to make yourself better understood.

7 Theoretical aspects: the discrete case

The Galerkin method we exposed two sections ago fits into a very general framework
of Galerkin methods for operator equations. Consider an invertible operator A : H →
H ′, where H is a Hilbert space and H ′ is its dual. We want to study the numerical
approximation for the operator equation

Aψ = g.

Let Hh be a sequence of finite dimensional subspaces of H, directed in the parameter h,
that tends to zero.

Remark. The parameter h can be a geometrical parameter (as it happens often in finite
element analysis) or not. With it we simply want to describe that there are several subspaces
and that, in general, they become richer as h → 0. From now on we will use a common
convention when writing numerical mathematics: C > 0, with possible subscripts, will be a
constant independent of h and of any other quantity it is multiplied by. The constant can be
different in different occurrences, unless we state the opposite. ¤

The Galerkin approximation is the solution (if it exists and if it is unique) to the
discrete problem:

ψh ∈ Hh, 〈Aψh, ϕh〉 = 〈g, ϕh〉, ∀ϕh ∈ Hh.

Before going on, let us point out some simple facts:
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(a) If ξ1, . . . , ξN is a basis of Hh, the discrete problem is equivalent to the linear system

N∑
j=1

〈Aξj, ξi〉ψj = 〈g, ξi〉, i = 1, . . . , N

where (ψ1, . . . , ψN) is the vector of coefficients of ψh ∈ Hh in that basis:

ψh =
N∑

j=1

ψj ξj.

(b) Therefore existence–and–uniqueness (both together) do not depend on the right–
hand side. They only depend on the invertibility of the matrix

〈Aξj, ξi〉, i, j = 1, . . . , N.

(c) If the operator A is self–adjoint

〈Aψ,ϕ〉 = 〈Aϕ,ψ〉∗, ∀ψ, ϕ ∈ H,

then the corresponding matrix at the discrete level is hermitian. If the operator is
symmetric

〈Aψ, ϕ〉 = 〈Aϕ,ψ〉, ∀ψ, ϕ ∈ H,

the matrix is symmetric.

(d) The method is based on reduction to finite dimension of the operator equation
Aψ = g written in variational form

ψ ∈ H, 〈Aψ, ϕ〉 = 〈g, ϕ〉, ∀ϕ ∈ H.

As we had already mentioned in the particular case of the single–layer equation,
there is no additional effort in obtaining this formulation. It simply states that
since Aψ and g are the same element of the dual space H ′, they coincide when
acting for arbitrary ϕ ∈ H.

Exercise. Assume that for a particular h, the exact solution belongs to Hh. Prove that

ψh = ψ for that value of h.

Assume that the system is invertible at least for h small enough. The method is
said to be stable if there exists C1 such that

‖ψh‖ ≤ C1‖g‖.

(Notice that the norm for ψh is that of H, but the norm for g is that of H ′). Since A is
bounded, then stability can be written as a bound of the discrete solutions in terms of
the continuous solution

‖ψh‖ ≤ C2‖ψ‖,
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by simply taking C2 = C1 ‖A‖. Stability implies the existence of C3 > 0 such that

‖ψ − ψh‖ ≤ C3 inf
ϕh∈Hh

‖ψ − ϕh‖.

Let us prove this. Take a particular ϕ̃h ∈ Hh and let f := A(ψ − ϕ̃h). Then, the exact
solution to the equation

Aρ = f

is ρ = ψ − ϕ̃h and the Galerkin solution

ρh ∈ Hh, 〈Aρh, ϕh〉 = 〈f, ϕh〉, ∀ϕh ∈ Hh

is ψh − ϕ̃h. Then

‖ψ − ψh‖ ≤ ‖ψ − ϕ̃h‖+ ‖ψh − ϕ̃h‖ ≤ (1 + C2)‖ψ − ϕ̃h‖,

and therefore
‖ψ − ψh‖ ≤ (1 + C2)‖ψ − ϕh‖, ∀ϕh ∈ Hh.

Since Hh is finite dimensional, it can be proved that in the bound

‖ψ − ψh‖ ≤ C3 inf
ϕh∈Hh

‖ψ − ϕh‖

the infimum is a minimum. Anyway, the conventional wisdom is writing an infimum, and
we are not going to challenge common uses. In the world of Galerkin approximation to
elliptic boundary value problems, this bound is known as Céa’s lemma. As we will see
later on, for elliptic equations stability is for free (all Galerkin methods satisfy it). In the
non–elliptic world, the bound is known as a Céa estimate. The interesting fact is that
this bound implies stability, which follows the following very simple argument

‖ψh‖ ≤ ‖ψ‖+ ‖ψ − ψh‖ ≤ ‖ψ‖+ C3 inf
ϕh∈Hh

‖ψ − ϕh‖
ϕh=0

≤ (1 + C3)‖ψ‖.

A subtler argument shows that in the inequalities

‖ψh‖ ≤ C2‖ψ‖

and
‖ψ − ψh‖ ≤ C3 inf

ϕh∈Hh

‖ψ − ϕh‖

one can always have C2 = C3. The Céa estimate moves the problem of studying the
Galerkin error to one purely of approximation theory, namely to prove that

inf
ϕh∈Hh

‖ψ − ϕh‖ h→0−→ 0.

If this holds for arbitrary ψ ∈ H, then we know that

‖ψ − ψh‖ h→0−→ 0
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for all possible right–hand sides in the equation. This property is called convergence of
the method.

Since
inf

ϕh∈Hh

‖ψ − ϕh‖ ≤ ‖ψ − ψh‖,

convergence implies the approximation property

‖ψ − ψh‖ h→0−→ 0, ∀ψ ∈ H.

By using a well–known but non–trivial theorem of functional analysis (the principle of
uniform boundedness or the Banach–Steinhaus theorem), it is possible to prove that
convergence implies stability. Therefore, we have

Convergence = Stability + Approximation property.

Remark. It is also possible to prove that stability is equivalent to the following condition on
the discrete bilinear form: there exists C > 0

sup
0 6=ϕh∈Hh

|〈Aψh, ϕh〉|
‖ϕh‖ ≥ C ‖ψh‖, ∀ψh ∈ Hh.

This condition is usually called a discrete inf–sup condition or Babuška–Brezzi condition.
In relation to the first stability inequality

‖ψh‖ ≤ C1‖g‖

it is simple to prove that C1 = 1/C. An advantage of using the discrete inf–sup condition is
that it implies invertibility of the system of linear equations and therefore the definition of the
discrete solution. ¤

Remark. The underlying idea of this kind of analysis of Galerkin methods by showing
stability and the approximation property is by no means necessary to prove that this kind of
numerical methods work properly. Notice that if we want to show convergence for arbitrary
right–hand sides (arbitrary solutions), the paradigm

Convergence = Stability + Approximation property

is the correct one. Stability plus knowing that

‖ψ − ψh‖ h→0−→ 0,

for our unknown solution is enough to prove convergence for our sequence of solutions. It could
happen that the sequence of discrete spaces is correct from the point of view of stability and to
approximate some solutions, but not all.

There’s more, however. Convergence for some solutions can be attained without the re-
quirement of stability. This is the key to many numerical methods based on adaptivity, where
the sequence of subspaces is chosen progressively depending on the behaviour of the discrete
solutions obtained. The sequence of spaces depends then on the particular right–hand side, is
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constructed to satisfy the approximation property for the concrete solution but can fail to sat-
isfy the inf–sup condition (stability). The nice paradigm is thus broken into pieces. Things are
however not moving fast enough to justify forgetting all the good old theories to have something
newer and better, so stability is here to stay, at least for a while. ¤

Remark. There are many other possible generalizations of operator equations that fit in a
framework suitable for Galerkin approximations. For instance one can work with A : H → H and
test the equation either with H itself (via the inner product). The Riesz–Fréchet representation
theorem says that it doesn’t matter which of them you use. However, the way the operator
equation is written down allows to use a Galerkin method or not. The Galerkin methods form
a family in the wider class of Petrov–Galerkin or projection methods. Sometimes a clever
rewriting of the discrete and continuous equations allow to understand a discretization scheme
as a projection method, even if it is not self–evident. ¤

If the operator A is elliptic

Re〈Aψ, ψ〉 ≥ α‖ψ‖2, ∀ψ ∈ H,

stability of Galerkin schemes follows readily: it is no longer a hypothesis. First, since
ellipticity is inherited by the discrete spaces

Re〈Aψh, ψh〉 ≥ α‖ψh‖2, ∀ψh ∈ Hh,

(the constant is the same), then the solution to the Galerkin equations

ψh ∈ Hh, 〈Aψh, ϕh〉 = 〈g, ϕh〉, ∀ϕh ∈ Hh

is unique (this is very simple to prove). Also

α‖ψh‖2 ≤ Re〈Aψh, ψh〉 ≤ |〈Aψh, ψh〉| = |〈g, ψh〉| ≤ ‖g‖ ‖ψh‖,
so we obtain

‖ψh‖ ≤ (1/α)‖g‖
and consequently

‖ψh‖ ≤ (‖A‖/α)‖ψ‖
and the Céa estimate

‖ψ − ψh‖ ≤ (‖A‖/α) inf
ϕh∈Hh

‖ψ − ϕh‖.

Convergence then follows from the approximation property.
The following key result relates convergence (not stability!) of Galerkin approxima-

tions with the Fredholm theory.

Theorem Assume that the Galerkin method based on the sequence of spaces {Hh} is
convergent for the operator A. If K is compact and A + K is invertible (it is enough that
A + K is injective), then the method is convergent for A + K. Moreover, the stability
constant is proportional to that of the method applied to A multiplied by ‖(A + K)−1‖.
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The theorem can be looked at with positive eyes and asserts that your method is going
to work well if it works well adding or taking compact terms. For instance, a Galerkin
method for an operator A+K, where A is elliptic, is going to be stable if the approximation
property holds. Nevertheless, the stability constant can be quite bad if ‖(A + K)−1‖ is
large and the asymptotic regime (the hs small enough where all the inequalities hold) can
be beginning somewhat late. This is a drawback of a certain relevance in some (but by
no means all) applications to scattering problems. More on this in the following section.

8 Discretization revisited

In this section we are going to apply the theory above to our case and to examine with more
detail some aspects related to implementation of the Galerkin and collocation methods.

Let us return to the equation

ψ ∈ H−1/2(Γ), VΓψ = g

and its Galerkin discretization

ψh ∈ Xh, 〈VΓψh, ϕh〉 = 〈g, ψh〉, ∀ϕh ∈ Xh

by means of the space

Xh := {ψh : Γ → C |ψh|Γj
∈ P0, ∀j}.

We know that
VΓ = elliptic + compact

and that VΓ is invertible if −k2 is not an interior Dirichlet eigenvalue. In this case, for h
small enough, the corresponding matrix is invertible, we have a stability bound

‖ψh‖−1/2,Γ ≤ C ‖ψ‖−1/2,Γ

and the Céa estimate

‖ψ − ψh‖−1/2,Γ ≤ C inf
ϕh∈Xh

‖ψ − ϕh‖−1/2,Γ.

Remark. The constant C deserves some additional attention. It is a stability constant that
depends on the ellipticity constant for V0 and on the norm of the inverse of VΓ. The first of these
constants depends only on the boundary Γ, but the second depends on the wave number. The
constant will blow–up if we approach one of the Dirichlet eigenvalues. Also, when the asymptotic
regime (the h small enough so that all inequalities hold) begins depends on the wave number,
both on its size and on the proximity to a bad eigenvalue.

The problem with the proximity to a Dirichlet eigenvalue can be solved using a better integral
equation. I emphasize that we are still on a first step in an introductory course. It takes time
to see all the difficulties and more time to solve them.

There is another question on the ability of the space Xh to approximate the exact solution.
For high wave numbers, the solution can be highly oscillating, and the triangulation has to be
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very fine to cope will all the oscillations of the exact solution. Keep in mind that high frequencies
require specific techniques! ¤

If
h := max{hj | j = 1, . . . , N}, hj := diam(Γj)

converges to zero and we assume a maximum flattening hypothesis on the triangulation,
then

inf
ϕh∈Xh

‖ψ − ϕh‖−1/2,Γ
h→0−→ 0,

no matter how singular ψ is. To see that, first approximate ψ by an element in L2(Γ)
(which is dense in H−1/2(Γ)) and then make the L2(Γ)−orthogonal projection of this
function. Both terms can be made as small as desired.

If ψ ∈ H1(Γ), with some additional analytic effort, we can prove that

inf
ϕh∈Xh

‖ψ − ϕh‖−1/2,Γ ≤ Ch3/2‖ψ‖1,Γ.

Notice that we have the norm of ψ in the right–hand side and not the typical seminorm
you find in finite element analysis. This is not really important and sometimes the bounds
for approximation on surfaces can be worked out a little bit to make them resemble more
like finite element estimates. But one has to acknowledge that curvature of the surface is
always a bore and lower order derivatives are due to appear most of the time in precise
bounds. This approximation estimate (which has nothing to do with the boundary integral
equation; it is simply ‘interpolation’ theory) together with the Céa estimate, give order
to the method

‖ψ − ψh‖−1/2,Γ ≤ Ch3/2‖ψ‖1,Γ

under the hypothesis of sufficient regularity of the solution.
The order estimate for approximation is not really easy to prove. We are going to

simply sketch how one can prove this kind of results in this very simple situation. The
first try is classical: we bound in H0(Γ) = L2(Γ) for ψ ∈ H1(Γ)

inf
ϕh∈Xh

‖ψ − ϕh‖0,Γ ≤ Ch‖ψ‖1,Γ.

This is easy to do by means of the L2(Γ)−orthogonal projection and classical analysis.
Then one tries this other one

inf
ϕh∈Xh

‖ψ − ϕh‖−1,Γ ≤ Ch2‖ψ‖1,Γ.

This one looks somewhat more difficult to prove since the H−1(Γ)−norm is usually defined
by duality, so we have to find a way of obtaining ϕh ∈ Xh such that

sup
06=ρ∈H1(Γ)

|〈ψ − ϕh, ρ〉|
‖ρ‖1,Γ

≤ Ch2‖ψ‖1,Γ.

Nevertheless, the point here is simply to take again ϕh as the best L2(Γ) approximation
and ρh ∈ Xh as the one of an arbitrary ρ ∈ H1(Γ), and bound as follows:

|〈ψ − ϕh, ρ〉Γ| = |〈ψ − ϕh, ρ− ρh〉Γ|
≤ ‖ψ − ϕh‖0,Γ ‖ρ− ρh‖0,Γ

≤ Ch2‖ψ‖1,Γ ‖ρ‖1,Γ.
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A key point here is that we could find a way of approximating ψ simultaneously in H0(Γ)
and H−1(Γ), that is, the same approximation serves for both bounds. Then we apply this
inequality

‖ψ − ϕh‖−1/2,Γ ≤ ‖ψ − ϕh‖1/2
0,Γ‖ψ − ϕh‖1/2

−1,Γ ≤ Ch3/2‖ψ‖1,Γ,

to obtain the desired bound.

Remark. The general bound

‖g‖−1/2,Γ ≤ ‖g‖1/2
0,Γ‖g‖1/2

−1,Γ, ∀g ∈ H0(Γ)

belongs to a very wide class of inequalities by Sobolev norms on the boundary. These are a
consequence of the structure of the family of spaces Hr(Γ) (for −1 ≤ r ≤ 1 or in wider intervals
if the surface is smooth enough). This kind of inequalities are often referred to as interpolation
inequalities, which has no relation at all with interpolation in the numerical sense, but on the
very deep fact that all inner spaces are interpolated from the extremes. ¤

To avoid the repeated occurrence of the constant C, which may be different in each
case, we will adopt the following convention. We write that

a . b

when there exists C > 0 (as usual independent on h and on particular data of the problem)
such that

a ≤ C b.

Exercise. Prove that if the solution to VΓψ = g belongs to H0(Γ) we can bound

‖ψ − ψh‖−1/2,Γ . h1/2‖ψ‖0,Γ.

It is also possible to obtain error bounds of the numerical solution in stronger norms.
For instance, it is possible to prove a bound

‖ψ − ψh‖0,Γ . h‖ψ‖1,Γ.

Nevertheless, this bound needs from more stringent conditions on the triangulation. If all
the elements are triangles and the size of the largest triangle is asymptotically controlled
by that of the smallest one

max{hj} . min{hj}
then the space Xh satisfies an inverse inequality

‖ϕh‖0,Γ . h−1/2‖ϕh‖−1/2,Γ, ∀ϕh ∈ Xh,

which gives a bound on the equivalence constant for the H0(Γ)− and H−1/2(Γ)−norms
restricted to the discrete finite–dimensional space Xh (where all norms are equivalent!).
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The fact that the size of the smallest triangle controls that of the largest one is called
quasi–uniformity.

Then, take ψ to be the exact solution, ψh the numerical solution and ϕh the H0(Γ)−
orthogonal projection of ψ on Xh, and follow the chain of inequalities

‖ψ − ψh‖0,Γ ≤ ‖ψ − ϕh‖0,Γ + ‖ϕh − ψh‖0,Γ

. ‖ψ − ϕh‖0,Γ + h−1/2‖ϕh − ψh‖−1/2,Γ

. ‖ψ − ϕh‖0,Γ + h−1/2
(
‖ψ − ψh‖−1/2,Γ + ‖ψ − ϕh‖−1/2,Γ

)

. h‖ψ‖1,Γ

that prove the desired convergence property. Notice that we have used the inverse inequal-
ity (which follows from quasi–uniformity, but could hold in more general cases) and again
the simultaneous optimal approximation properties of the H0(Γ)−orthogonal projection
in two different norms.

Similar but more sophisticated arguments can be used to prove convergence in stronger
Sobolev norms, although the lack of regularity of the discrete space Xh imposes that we
cannot arrive to measure errors in H1/2(Γ), since this space does not contain piecewise
smooth discontinuous functions.

Another line of analysis goes to prove convergence in even weaker norms. To the
finite element oriented person, this can seem quite awkward, given the fact that H−1/2(Γ),
the natural space in our analysis, is already a very weak space, endowed with a dual
norm. We’ll see in a while why weak norms are interesting. First, the bound. With some
regularity requirements on the boundary, it is possible to prove that

‖ψ − ψh‖−2,Γ . h3/2‖ψ − ψh‖−1/2,Γ,

so in the optimal case of ψ ∈ H1(Γ),

‖ψ − ψh‖−2,Γ . h3‖ψ‖1,Γ,

which means that we have been able to double the order of convergence by looking at
a much weaker norm. This result is a consequence of the so–called Aubin–Nitsche
technique, which follows a very similar path as the one we use when we want to prove
L2(Ω)−convergence of finite elements for elliptic problems of the second order.

But, why can this inequality be interesting for us? Assume that the boundary is
smooth enough to avoid unnecessary complications. Fix a point x ∈ Ω+. Then the
function

φ(x, · ) : Γ → C

is very smooth (the singularity doesn’t happen, since x is outside and the function moves
on the boundary), so φ(x, · ) ∈ C2(Γ) ⊂ H2(Γ). Hence

|(SΓψ)(x)− (SΓψh)(x)| = |〈φ(x, · ), ψ − ψh〉Γ| ≤ ‖φ(x, · )‖2,Γ‖ψ − ψh‖−2,Γ

since the duality product 〈 · , · 〉Γ represents also the duality of H2(Γ) and H−2(Γ). There-
fore if

u := SΓψ, uh := SΓψh
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(these are the quantities of interest for the problem; ψ is an artificial unknown), then

|u(x)− uh(x)| . h3‖ψ‖1,Γ ‖φ(x, · )‖2,Γ

The right–most constant can be uniformly bounded on compact sets not intersecting the
boundary, which gives a very high order of convergence for the computed potentials, as
long as we don’t approach the boundary, since then the constant ‖φ(x, · )‖2,Γ blows–up.

For bounds near the boundary, we only can use the natural norm in H−1/2(Γ) for the
density to obtain local H1− bounds in the exterior of order at most h3/2.

Remark. In boundary element computations you always have to keep in mind what you want
to compute (in fact, you should be doing this all the time you compute something) and no what
you are computing. For us the density is not a quantity of particular interest. In a forthcoming
section we will see that in some boundary integral formulations the unknown has an interest of
its own. Right now, our interest is limited to the scattering amplitude u and its approximation.
If you are not interested in what happens very near the boundary, the optimal convergence
order h3 looks extremely promising for the method. This kind of weak norm estimates is very
particular of Galerkin methods. For collocation, right now there is not a very satisfactory error
analysis in any norm, and the duality argument to move to weaker norms does not apply so
easily (actually the method does not exhibit numerically such good properties when we look
at potentials). This makes the additional effort of the Galerkin method look more desirable,
although the gain needs regularity in the boundary, so it isn’t universal for all kind of scatterers.
¤

If we now turn our attention to the matrix terms of the Galerkin method
∫

Γi

∫

Γj

φ(x,y)dγ(x) dγ(y)

there are some details that deserve to be commented:

• The diagonal terms have a singularity all along the line x = y. If one applies
numerical integration, one has to be very careful to avoid using the same rule in Γi for
the inner and outer integrals, since we cannot evaluate φ(x,x). Also, the integrand
is not smooth and one cannot expect a very good behaviour of simple quadrature
rules. Usually some transformations of variables are performed to improve the aspect
of the integrand. It is also possible to do some kind of singularity extraction and
perform part of the work analytically.

• When two elements share a side, the singularity is reduced to both arguments x and
y belonging to that side. When elements share a vertex, the singularity is limited to
a single point of the four–dimensional domain Γi×Γj. Again, numerical quadrature
cannot ignore these singularities.

• In other cases, the integrand is very smooth, but can be close to a singularity if the
elements Γi and Γj are near each other.
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• In any case, there is a necessary balance between having a qualified numerical inte-
gration procedure and not wasting a lot of computational effort in computing almost
exactly some integrals, when we are approximating an integral equation with a low
order method.

Exercise. Let us now try another method. We also consider the partition in elements
Γ1, . . . ,ΓN and a choice of points xj ∈ Γj (for instance barycenters if the elements are triangles).
One can devise a method by approximating the integral by a quadrature rule where the densities
act as weights: ∫

Γ
φ( · ,x)ψ(x)dγ(x) ≈

N∑

j=1

φ( · ,xj) ψj .

The quantities ψj approximate the value of ψ, taking into account the size of the element, which
would give the correct weight if ψ was known (which is not the case). Then, we compare the
data function g with this discrete potential generated by N sources by matching Galerkin–wise
their averages over the elements Γi:

N∑

j=1

(∫

Γi

φ(y,xj)dγ(y)
)

ψj =
∫

Γi

g(y)dγ(y), i = 1, . . . , N.

This is called a delta or point–source method.

(a) Compare the matrix and the right–hand side of this method with those of the collocation
method.

(b) In comparison with collocation, can you decide whether this method needs more, less or
the same regularity on the right–hand side to be applied with property?

(c) Compare the potentials obtained by the Galerkin, collocation and delta method. Which
is simpler?

As we explained in Section 5, assume that our surface Γ is given by a series of patches
from a polyhedron Γ̂ and that we have collected the transformations from each face of the
polyhedron to the corresponding curved patch in a single map

η : Γ̂ → Γ.

With some degree of notational freedom we can consider integrals over Γ̂ as integrals with
respect to the two–dimensional Lebesgue measure, so we will write

∫
bΓ
f(ξ)dξ

in the understanding that we are parameterizing each face of Γ̂ by simply moving (rotating
and translating) it to the plane R2. The area element in Γ can be defined from η and
thus ∫

Γ

f(x)dγ(x) =

∫
bΓ
f(η(ξ)) σ(ξ) dξ, σ := |ηξ1 ∧ ηξ2|

34



where the same convention as to what we understand by ξ.
Then, the elements in Γ, which we have called {Γ1, . . . , ΓN} are the images through η

of elements in Γ̂, {Γ̂1, . . . , Γ̂N}.

Exercise. Prove that the space we used in the Galerkin method can be written equivalently
as

Xh := {ψh : Γ → C | (ψh ◦ η)|bΓj
∈ P0, ∀j}.

Consider instead a new Galerkin method with the following discrete space

Yh := {ψh : Γ → C |σ (ψh ◦ η)|bΓj
∈ P0, ∀j}.

Write down what is the formula for the elements of the coefficient matrix and right–hand side

vector of this new method. Devise a collocation method in the same spirit.

Higher order methods can be constructed by mapping higher order polynomials on the
flat elements Γ̂j to the curved boundary Γ. Since the method does not require continuity
of the discrete space, one can go further employing discontinuous elements. However, the
computational effort to increase order is much higher (the number of degrees of freedom
increases very fast) and it is customary to employ continuous piecewise polynomials to
reduce the number of degrees of freedom, while retaining the higher order approximation
properties of the method.

9 A word on the two–dimensional case

Most of what we have done so far works also in two dimensions. Now, boundaries are
curves, which are much simpler to handle that surfaces. The fundamental solution is

φ(x,y) :=
ı

4
H

(1)
0 (k |x− y|).

The function H
(1)
0 is defined in terms of Bessel functions as

H
(1)
0 (r) = J0(r) + ı Y0(r)

(J0 is the Bessel function of order zero; Y0 is the Bessel function of the second kind and
order zero, also called Neumann function of order zero) and called Hankel function of
the first kind and order zero. As r → 0, H(1)(r) has a logarithmic singularity, which
is also integrable.

The Sommerfeld condition is now

lim
r→∞

r1/2 (∂ru− ı k u) = 0.

One defines similarly single–layer potentials, the operator VΓ and proves the equivalent
properties. For the decomposition

VΓ = V0 + compact
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we have to use

V0ψ := − 1

2π

∫

Γ

log |ε( · − y)|ψ(y)dγ(y)

(dγ( · ) is a length element, not area!) with ε < 1/diam(Ω). The reason for this new
parameter related to size is not entirely obvious but has a lot to do with the essential
difference of electrostatics in two and three dimensions.

If the boundary is smooth and we have a smooth parameterization of the whole curve
(not a collection of pieces of parameterizations), we can very easily use high order elements
without increasing the number of degrees of freedom, such as splines and trigonometric
polynomials.

10 A direct formulation

At this point we are going to restart and work with new formulations, to obtain new
integral equations, which we will have to numerically solve and then (when possible)
analyse the discrete method. So, hold your breadth ... Part of what we are going to do
includes new concepts, but a lot of it is going to be a more or less step by step repetition
of already studied techniques.

The departure point for our new formulation is the third Green formula adapted to
the Helmholtz equation. Assume that u is the solution of an exterior scattering problem
(for which we don’t give the boundary condition yet):

∆u + k2u = 0, in Ω+,

∂ru− ı k u = o(r−1), r →∞.

Then,

u(x) = −
∫

Γ

φ(x,y)∂νu(y)dγ(y) +

∫

Γ

∂ν(y)φ(x,y) u(y) dγ(y), x ∈ Ω+.

The formula holds with ordinary integrals if u is smooth enough near the boundary and
with a duality product for the first term if u is simply locally H1. The formula says a lot
of things. Among them:

• It says that the solution is C∞(Ω+), and that lack of regularity is limited to the
proximities to the boundary of the scatterer. We already had this from the indirect
formulation, excepting at Dirichlet eigenfrequencies.

• It also says that if we know both Cauchy data (Dirichlet and Neumann data), the
solution is determined via an explicit formula. Taking this point of view, we say
that this is a representation formula.

If we take the limit to x ∈ Γ we find something new: if x is a smooth point of Γ, then

1

2
u(x) = −

∫

Γ

φ(x,y)∂νu(y)dγ(y) +

∫

Γ

∂ν(y)φ(x,y) u(y) dγ(y).
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This means that if we evaluate verbatim the right–hand side formula we obtain u(x) when
x ∈ Ω+, but only 1

2
u(x) when x ∈ Γ. Moreover,

0 = −
∫

Γ

φ(x,y)∂νu(x)dγ(y) +

∫

Γ

∂ν(y)φ(x,y) u(y) dγ(y), x ∈ Ω.

Remark. The formula holds also true, but with opposite signs, for interior problems. If

∆u + k2u = 0, in Ω,

then
u(x) =

∫

Γ
φ(x,y)∂νu(y)dγ(y)−

∫

Γ
∂ν(y)φ(x,y) u(y) dγ(y), x ∈ Ω.

Notice that the changes of signs makes sense since we are keeping the sense of the normal
vectors (always pointing inside Ω+), which means that they are now pointing outwards whereas
before they where pointing inwards, given the fact that the domain was Ω+. Notice also that
this formula doesn’t contradict the last one for the exterior problem: the Cauchy data in that
formula where for the exterior problem and here they are for the interior problem. ¤

Exercise. Using the representation formula for the interior problem, prove that a function

cannot be simultaneously a Dirichlet and a Neumann eigenfunction for the Laplace operator in

Ω. (Notice that we needed this to prove that invertibility of the single–layer operator VΓ was

equivalent to −k2 not being a Dirichlet eigenvalue.)

Let us simplify the aspect of all these formulas using a new potential

(DΓϕ)(x) :=

∫

Γ

∂ν(y)φ(x,y) ϕ(y) dγ(y), y ∈ Ω+ ∪ Ω = R3\Γ

and a new operator

(KΓϕ)(x) :=

∫

Γ

∂ν(y)φ(x,y) ϕ(y) dγ(y), y ∈ Γ.

As before, potential and operator are given by the same formula, only the potential is a
function defined in R3\Γ and the operator gives a function defined on Γ.

Remark. The potential DΓϕ is called a double–layer potential for reasons we will explore
in the following section. ¤

If again

∆u + k2u = 0, in Ω+,

∂ru− ı k u = o(r−1), r →∞,

and we denote
g := u|Γ, λ := ∂+

ν u|Γ,
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then the representation formula says that

u = DΓg − SΓλ, in Ω+.

I want to emphasize that the Sommerfeld condition has to be satisfied for this to be true,
since the right–hand satisfies it even if g and λ are not the Cauchy data of a solution of
the Helmholtz equation. The limiting value of this formula is

1
2
g = KΓg − VΓλ.

For the Dirichlet problem (sound–soft scattering), we can try to solve the equation

VΓλ = −1
2
g + KΓg

and then obtain u by means of the representation formula. I don’t waste your time, so
let’s give fast facts. Bullet points!

• The equation has the same structure as that of the indirect method. The right–hand
side is more complicated though.

• If −k2 is not a Dirichlet eigenvalue in Ω, we have a unique solution of the problem.
We can solve it with the same Galerkin method as before.

• Now the unknown is a physical quantity, not a density we have devised to solve the
problem. Notice that if you know u|Γ and ∂νu|Γ, you also have a first order Taylor
knowledge of u near the boundary.

• The exterior Dirichlet problem admits a unique solution. This fact can be proved
independently of the value of k. Therefore, the integral equation always has a
solution, but it can fail to be unique when VΓ is not invertible. The null–space (also
called kernel) of VΓ is the set of normal derivatives of the eigenfunctions

∆ξ + k2ξ = 0, in Ω,

ξ = 0, on Γ

Since (see below to check the formulas for interior problems)

0 = SΓ∂νξ −DΓξ = SΓ∂νξ,

any solution of the integral equation works from the point of view of the representa-
tion formula. The problem is that only one of these solutions is the normal derivative
of the solution, so if you are after the correct value of the normal derivative, you
have to be extra careful here!

Exercise. Using the same Galerkin method as exposed in Section 5, what is the form of the

right–hand side? And for the collocation method?
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Exercise. Write down the boundary integral equation you would have to solve for the
sound–hard scattering problem (Neumann problem):

∆u + k2u = 0, in Ω+,

∂ru− ı k u = o(r−1), r →∞,

∂νu|Γ = λ.

For the interior problem, we have the same type of formulas: if

∆u + k2u = 0, in Ω

and g− := u|Γ, λ− := ∂−ν u|Γ, then we have the representation formula

u = SΓλ− −DΓg−, in Ω,

the identity satisfied by Cauchy data

1
2
g− = VΓλ− −KΓg−

and
0 = SΓλ− −DΓg−, in Ω+.

Exercise. Write down the integral equations you would have to solve for the interior Dirichlet

and Neumann problems.

Exercise. Let

∆u + k2u = 0, in Ω+ ∪ Ω,

∂ru− ı k u = o(r−1), r →∞.

Prove that
u = SΓ(∂−ν u− ∂+

ν u)−DΓ(u− − u+), in Ω+ ∪ Ω.

(Hint: use the representation formulas for the interior and exterior problems and also the iden-

tities satisfied by the right–hand side in the complementary domain). What is the value of the

function defined by the right–hand side when restricted to the boundary Γ?

11 Sound–hard scattering

We end this course by showing more formulas and more techniques to numerically solve
exterior scattering problems via boundary elements. Our new problem is the exterior
Neumann problem,

∆u + k2u = 0, in Ω+,

∂ru− ı k u = o(r−1), r →∞,

∂νu|Γ = λ

39



for given λ ∈ H−1/2(Γ). A proof of existence and uniqueness of this problem can be
given by following similar steps to the Dirichlet problem: we prove uniqueness of the
homogeneous problem (λ = 0); we propose a potential solution and obtain a related
boundary integral equation and, finally, we use this equation and Fredholm theory to
prove existence of solution.

We will give it several tries: an indirect method with a double–layer potential; an
indirect method with a single layer potential and a direct method.

11.1 Double–layer potentials

The first possibility we explore is trying

u := DΓϕ, ϕ ∈ H1/2(Γ).

The following exercise proves that in the boundary

γ+(DΓϕ) = 1
2
ϕ + KΓϕ

γ−(DΓϕ) = −1
2
ϕ + KΓϕ

∂+
ν (DΓϕ) = ∂−ν (DΓϕ).

The last expression gives rise to a boundary integral operator

WΓϕ := −∂ν(DΓϕ)

or, written more explicitly

WΓϕ := −∂ν

∫

Γ

∂ν(y)φ( · ,y) ϕ(y) dγ(y).

The negative sign in front of the definition looks quite arbitrary. It is imposed to ensure
a certain degree of positiveness, as we will see in a while.

Exercise. Take an arbitrary g ∈ H1/2(Γ), solve the exterior Dirichlet problem and call
λ := ∂νu. The representation formulas of Section 10 read then:

u = −SΓλ +DΓg, in Ω+

1
2g = −VΓλ + KΓg, on Γ
0 = −SΓλ +DΓg, in Ω.

(a) By writing DΓg = u + SΓλ in Ω+, prove that

γ+(DΓg) = 1
2g + KΓg.

(b) Prove that
γ−(DΓg) = VΓλ = −1

2g + KΓg.

What is the discontinuity of the double–layer potential across Γ?
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(c) Using the identities

λ = −∂+
ν (SΓλ) + ∂+

ν (DΓg),
0 = −∂−ν (SΓλ) + ∂−ν (DΓg),
λ = ∂−ν (SΓλ)− ∂+

ν (SΓλ),

(the last one was mentioned and used when studying the single–layer potential) prove that

∂+
ν DΓg = ∂−ν DΓg

and therefore the normal derivative of the double–layer potential is continuous.

Remark. We already mentioned that single–layer acoustic potentials extend to the Helmholtz
equation (time–harmonic acoustic fields) the idea of electrostatic charges in equilibrium. Simi-
larly, double–layer potentials extend the idea of dipoles. Now the potential is discontinuous (the
dipole distribution on the surface creates the discontinuity) but the electric field is continuous
in the normal direction across the boundary. ¤

It is very tempting to introduce the derivative under integral sign and write something
like this

(WΓϕ)(x) = −
∫

Γ

∂ν(x)∂ν(y)φ(x,y) ϕ(y) dγ(y).

But you have to be careful with this. By doing the two normal derivatives, the kernel
function

∂ν(x)∂ν(y)φ(x,y)

fails to be integrable. In order that the integral makes full sense, we have to subtract the
singularity and integrate the regular part of the integrand. What we really do there is the
Hadamard finite part of the integral. Independently of how this is computed, you write

WΓϕ = −f.p.

∫

Γ

∂ν( · )∂ν(y)φ( · ,y) ϕ(y) dγ(y).

The important points about WΓ are:

• WΓ is bounded from H1/2(Γ) to H−1/2(Γ).

• WΓ is invertible if and only if −k2 is not a Neumann eigenvalue of the Laplace
operator in Ω.

• There exists an operator W0 such that

〈ϕ,W0ϕ〉Γ ≥ β ‖ϕ‖2
1/2,Γ, ∀ϕ ∈ H1/2(Γ)

and WΓ −W0 is compact. Here is where the minus sign in the definition becomes
relevant.
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• Because of the last property, in the case where WΓ is invertible, a Galerkin method
with a sequence of subspaces of Yh ⊂ H1/2(Γ) that satisfy

inf
ρh∈Yh

‖ϕ− ρh‖1/2,Γ
h→0−→ 0, ∀ϕ ∈ H1/2(Γ)

defines a convergent method. This means that the method defined by

ϕh ∈ Yh, 〈ρh,WΓϕh〉Γ = 〈ρh, λ〉Γ, ∀ρh ∈ Yh

satisfies
‖ϕ− ϕh‖1/2,Γ

h→0−→ 0.

• A piecewise smooth function defined on a partition of Γ into elements has to be
continuous to be an element of H1/2(Γ). Therefore, boundary elements for this
problem have the same continuity requirements as the typical finite elements for
elliptic problems of the second order.

For instance if we use a space of continuous piecewise linear elements (the classical
Courant finite elements) we obtain, with regularity assumptions on the solution, the bound

‖ϕ− ϕh‖1/2,Γ . h3/2‖ϕ‖2,Γ.

Again, a duality argument (an more assumptions on the regularity of the domain), can
be used to improve this bound in a weaker norm to obtain

‖ϕ− ϕh‖−1,Γ . h3‖ϕ‖2,Γ.

This is the optimal bound we observe if we look at pointwise values of the approximated
potential sufficiently far from the boundary.

11.2 Single layers

Another option for an indirect formulation is trying again with single–layer potentials:

u = SΓψ, ψ ∈ H−1/2(Γ).

To do that, we have first to know what is the normal derivative of a single layer potential,
which is going to be different from the inside to the outside, since its difference is precisely
the density ψ. With some effort (not a lot) it can be proved that

∂+
ν u = −1

2
ψ +

∫

Γ

∂ν( · )φ( · ,y) ψ(y) dγ(y), on Γ.

Defining

(Kt
Γψ)(x) :=

∫

Γ

∂ν(x)φ(x,y) ψ(y) dγ(y),

the expression simplifies to
∂+

ν SΓψ = −1
2
ψ + Kt

Γψ.
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Therefore, to solve the Neumann problem, we only have to try to find a solution to the
new boundary integral equation

−1
2
ψ + Kt

Γψ = λ

and then input ψ in the single–layer potential u = SΓψ to obtain the scattered wave field.

Exercise. Prove that
∂−ν SΓψ = 1

2ψ + Kt
Γψ.

The operators KΓ and Kt
Γ are transposed to each other, meaning that

〈Kt
Γψ, ϕ〉Γ = 〈KΓϕ, ψ〉Γ, ∀ψ ∈ H−1/2(Γ), ϕ ∈ H1/2(Γ).

Remark. KΓ and Kt
Γ are not adjoint to each other, but transposed. The only difference

between these two concepts is conjugation in the complex plane. ¤

Remark. In an exercise in the previous section, you will have arrived to a very similar integral
equation

−1
2 g + KΓg = VΓλ

for the Neumann problem. In this equation the unknown is the Dirichlet datum (this is a direct
method; no potentials are involved), we have KΓ instead of Kt

Γ and an integral operator in the
right–hand side. Independently on whether these integral equations are uniquely solvable or not
(we will not deal with this now), the direct formulation has always a solution, even if it is not
unique. ¤

With some regularity assumptions, that preclude polyhedra of the setting, it is possible
to prove that

KΓ : H1/2(Γ) → H1/2(Γ) is compact

and therefore

Kt
Γ : H−1/2(Γ) → H−1/2(Γ) is compact.

This means that equations with operator of the form

−1
2
I + Kt

Γ

satisfy always the Fredholm alternative. There is however a somewhat difficult point
here when we want to do numerical approximation. The question is ellipticity: trying an
inequality like

〈I ψ, ψ〉Γ ≥ α‖ψ‖2
−1/2,Γ
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is not possible, since in the bracket one component has to be in H1/2(Γ) and the other in
H−1/2(Γ). A solution would be using the inner product of H−1/2(Γ), where ellipticity is
trivial

(I ψ, ψ)−1/2,Γ = ‖ψ‖2
−1/2,Γ.

However, the numerical approximation by a Galerkin scheme requires then using the
variational formulation

ψ ∈ H−1/2(Γ), (−1
2
ψ + Kt

Γψ, ϕ)−1/2,Γ = (λ, ϕ)−1/2,Γ, ∀ϕ ∈ H−1/2(Γ)

as a starting point and the inner product in H−1/2(Γ) is not easy to handle.
The simplest thing to do is trying a Galerkin scheme in the spirit of what we did in

previous sections. We define Xh to be the space of piecewise constant functions and look
for

ψh ∈ Xh, −1

2

∫

Γ

ψh ϕh +

∫

Γ

(Kt
Γψh) ϕh =

∫

Γ

λϕh, ∀ϕh ∈ Xh.

For this we need the additional assumption that the Neumann datum λ belongs to L2(Γ),
which is not true for the Neumann problem in full generality, but certainly is for the
sound–hard scattering problem. This is tantamount to moving the integral equation

−1
2
ψ + Kt

Γψ = λ

to be happening in H0(Γ) instead of in H−1/2(Γ). Here the identity is elliptic with
respect to the H0(Γ)−inner product and therefore, assuming unique solvability, we obtain
asymptotic stability plus the convergence bound

‖ψ − ψh‖0,Γ . inf
ϕh∈Xh

‖ψ − ϕh‖0,Γ,

which, when ψ ∈ H1(Γ), yields the convergence rate

‖ψ − ψh‖0,Γ . h ‖ψ‖1,Γ.

This rate can be improved a little in weaker norms, but is still far worse than the kind
of bounds we obtained for the Dirichlet problem with single–layer potentials or for the
Neumann problem with double–layer potentials. It must be said, however, that in the
last case, continuity was a requirement on the space, since the density of a double layer
operator belongs to H1/2(Γ), where line discontinuities are forbidden.

Remark. The integral equation

1
2

ψ +
∫

Γ
∂ν( · )φ( · ,y) ψ(y) dγ(y) = λ, on Γ

(this would be for an interior Neumann problem) is basically where everything begun for integral
equations. In fact, the operator was the Laplace operator and the problem was being set in two
dimensions. The name of Ivar Fredholm is strongly related to this effort of dealing with boundary
integral equations of the second kind (identity plus compact operator), at a moment where all
the functional analysis was still in diapers. The effort of Fredholm, as well as that of Hilbert, the
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Riesz brothers, Schauder and many others, on developing abstract mathematical tools to deal
with linear operators in abstract spaces was originated in a big part from the effort of solving
(showing that it has a solution and trying to get it in some cases) this integral equation as a
way to prove existence of solution of boundary value problems when the nice Sobolev–space–
and–distribution–theory was still decades away. ¤

11.3 Direct formulations

We have already mentioned the possibility of using the representation formula

u = DΓg − SΓλ, in Ω+

and the integral equation
−1

2
g + KΓ g = VΓλ

as a way of solving the exterior Neumann problem. This problem should be solved in
H1/2(Γ) but, as before, the principal part of the integral equation (minus one half times
the identity operator) is elliptic in H0(Γ). One can devise then a Galerkin method similar
to the one for the single–layer representation, but using a H1/2−conforming boundary ele-
ment space, i.e., one with continuity conditions over interfaces of elements. The analytical
techniques developed in Section 8 can be used here to show convergence in H1/2(Γ) pro-
vided that we can use some inverse inequalities, which hold under some severe restrictions
on the triangulation.

If one is not that much interested in convergence of the Galerkin approximation of g
to this function in the correct norm (the trace norm H1/2(Γ)), but only in the exterior
solution sufficiently far from the obstacle, it is possible to benefit from Aubin–Nitsche
estimates in weak norms, which provide improved convergence rates.

Finally, since we know what the normal derivatives of single and double layer operators
look like, we can go back to the representation formula

u = DΓg − SΓλ, in Ω+

and take the normal derivative from the exterior

λ = ∂+
ν u = ∂νDΓg − ∂+

ν SΓλ = −WΓg − (−1
2
λ + Kt

Γλ)

to obtain the integral equation

WΓg = −1
2
λ−Kt

Γλ,

which is always solvable but fails to be uniquely solvable when −k2 is a Neumann eigen-
value of the Laplace operator in the interior domain. The same kind of numerical tech-
niques than those used for the double–layer representation apply here.

Remark. I’ve deliberately omitted any mention to collocation methods in this section. Of
course they also apply to this situation, at least formally. In the case of equations of the second
kind (for sufficiently smooth obstacles) it is even possible to do a proper analysis of the method,
but this analysis takes place more naturally in Hölder spaces than in Sobolev spaces. When the
hypersingular operator WΓ appears in the equation, things become trickier from the analytical
point of view and there is still a lot to be done. ¤
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12 Further reading

There are not many books dealing with the mathematical and numerical analysis of bound-
ary element methods. The literature is however much more important in the engineering
world, where you will be able to find many details on algorithms, implementation and
especially different problems where boundary element techniques apply.

The book

Boundary Element Methods by Goong Chen, Jingmin Zhou, Academic Press,
1992

details the boundary integral formulations for the Laplace, Helmholtz, Navier–Lamé (lin-
ear elasticity) and biharmonic (Kirchhoff plate) equations. The Sobolev theory is ex-
plained with care in the case of smooth interfaces. The fundamentals of Sobolev theory
and finite element theory are carefully explained. There are also some explanations on
pseudo–differential operators, a theory that allows for a generalization of the behaviour
of all the boundary integral operators for smooth boundaries. The section on numerical
analysis is not very long and right now it is not up–to–date.

The whole theory on boundary integral formulations based on elliptic operators (all
the equations where the principal part is VΓ or WΓ) is explained with an immense care
and taste for mathematical detail in

Strongly Elliptic Systems and Boundary Integral Equations by William McLean,
Cambridge University Press, 2000.

This is a book of hard mathematics, where you will learn a lot but are asked to have
patience. It does not cover numerical analysis.

If you are not afraid of reading maths in German, this is a very good choice:

Randelementmethoden. Analyse, Numerik und Implementierung schneller Al-
gorithmen by Stefan Sauter and Christoph Schwab, Teubner, 2004.

The book covers theoretical aspects, numerical analysis as well as many details on how
to approximate the integrals of Galerkin discretizations and how to solve efficiently the
large dense linear systems.

Three other books, with an increasing slope towards applications:

A Practical Guide to Boundary Element Methods with the Software Library
BEMLIB, by C. Pozrikidis, CRC Press, 2002.

Programming the Boundary Element Method : An Introduction for Engineers,
by Gernot Beer, John Wiley & Sons, 2001.

Boundary Element Methods for Engineers and Scientists, by Lothar Gaul,
Martin Kögl, Marcus Wagner, Springer, 2003
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