
STATIC AND DYNAMIC
RECURSIVE LEAST SQUARES

3rd February 2006

1 Problem #1: additional information

Problem. At step k we want to solve by least squares

A1

A2
...

Ak

 xk ≈

b1

b2
...
bk

 , Ak :=

A1

A2
...

Ak

 , bk :=

b1

b2
...
bk

with weight matrix

Wk :=

W1

W2

. . .

Wk

meaning that measurements at different times (steps) are independent.

Sizes.

• Matrices Aj are mj × n. We assume that they have maximum column rank.

• Matrices Wj are symmetric and positive definite.

• Simple case. mj = m for all j, meaning that the number of observations is
constant.

• Magnitudes. We assume that n is small, whereas mj can be relatively large.

The aim. To approximate Akxk ≈ bk we solve

(A>
kWkAk)

−1A>
kWkbk.

The idea is to use xk−1 to calculate xk in a shorter time.

1

Notation. We write

P−1
k :=

k∑
j=1

A>
j WjAj = A>

kWkAk.

Theorem (A recursion) Beginning with

x1 = P1A
>
1 W1b1, P1 = (A>

1 W1A1)
−1

the solution is given by the recurrent calculations j = 1, . . . , k

xj = xj−1 + PjA
>
j Wj︸ ︷︷ ︸

=: Kj

(bj − Ajxj−1), P−1
j = P−1

j−1 + A>
j WjAj.

Proof. It is a straightforward verification. ¤

Remark. The vector bj −Ajxj−1 is the residual of the observations at level j by taking
into account the values of the parameters at level j − 1.

A practical algorithm.

P−1 := A>
1 W1A1

x :=solve(P−1, A>
1 W1b1)

for j = 1 : k

P−1 := P−1 + A>
j WjAj

r := bj − Ajx % residual of recent calculations with new data

δ :=solve(P−1, A>
j Wjr)

x := x + δ

end for

Computational features. Explicit assembling of P−1 could be avoided if iterative
methods were to be used.

2 Problem # 2: dynamic least squares

The problem. Least squares solution to

A0

−F0 I
A1

−F1 I
. . .

−Fk−1 I
Ak

x0|k
x1|k
...

xk−1|k
xk|k

≈

b0

0
b1

0
...
0
bk

2

with weight matrix

Wk =

W0

W̃1

W1

. . .

W̃k

Wk

Interpretation. Observations in different times (for different magnitudes) are contained
in the equations

Ajxj ≈ bj

whereas
xj+1 ≈ Fjxj

is an approximate dynamic model, relating the sets of parameters.

Simplified notations. For matrices we write

Ak :=

A0

−F0 I
A1

−F1 I
. . .

−Fk−1 I
Ak

, Sk :=

A0

−F0 I
A1

−F1 I
. . .

−Fk−1 I

Names.

• smoothed values (at earlier states): xj|k for j < k;

• filtered value (at the current state): xk|k;

• predicted value (next state in the future, not yet observed): xk+1|k := Fkxk|k.

Theorem (Kalman filter recurrence) Starting with

x0|0 := (A>
0 W0A0)

−1A>
0 W0b0, P0|0 := (A>

0 W0A0)
−1,

the calculations for xk|k at different values of k can be carried out by doing:

xk|k−1 := Fk−1xk−1|k−1, xk|k := xk|k−1 + Kk(bk − Akxk|k−1)

where

Pk|k−1 := Fk−1Pk−1|k−1F
>
k−1 + W̃−1

k

Kk := Pk|k−1A
>
k (AkPk|k−1A

>
k + W−1

k)−1

Pk|k := (I −KkAk)Pk|k−1

Proof. See Section 4. ¤

3

Names.

• For the two steps of the method we write:

– prediction xk|k−1 := Fk−1xk−1|k−1

– correction xk|k := xk|k−1 + Kk(bk − Akxk|k−1)

• For the matrices intervening in computations

– predicted covariance Pk|k−1

– gain matrix Kk

– corrected covariance Pk|k

Sizes in the typical simple case.

• The number of parameters in the dynamical system is fixed, i.e., xj|k ∈ Rm for all
j, k

• The number of observations in each times step is fixed, i.e., bj ∈ Rn for all j.

m = #{parameters}, n = #{observations}.

• Hence the sizes of the matrices are as follows:

– Wj is m×m

– Ŵj is n× n

– Fj is m×m

– Aj is n×m

– Pk|k and Pk|k−1 are m×m

– Kk is m× n (acts on observations returning parameters).

Computational features. When n is large and m is small

• We have to compute Ck = AkPk|k−1A
>
k + W−1

k , which is n × n. Typically we have
W−1

k instead of Wk.

• To compute Kk(bk − Akxk|k−1) = Pk|k−1A
>
k C−1

k (bk − Akxk|k−1) we solve an n × n
system.

• To compute KkAk = Pk|k−1A
>
k C−1

k Ak we solve m systems n× n. All these calcula-
tions can be done in parallel.

4

Steady state. We remark that the steady–state case, where the dynamics reduces to

xj+1 ≈ xj, ∀j

that is,
Fj = I, ∀j

is not equivalent to the static case (Problem #1).

3 Normal equations of the Kalman filter

A first observation. In the normal equations

A>
kWkAkxk = A>

kWkbk

we can write

A>
kWkAk =

D0 U0

U>
0 D1 U1

U>
1

.

. . . Dk−1 Uk−1

U>
k−1 D•

k

, A>
kWkbk =

A>
0 W0b0

A>
1 W1b1

...
A>

k Wkbk

 =

c0

c1
...
ck

where (taking W̃0 = 0)

Dj := W̃j + A>
j WjAj + F>

j W̃j+1Fj

Uj := −F>
j W̃j+1

D•
k := W̃k + A>

k WkAk.

The symbol • marks the only element of the matriz which depends on the size (k). Notice
also that for the next time step

Dk = D•
k + F>

k W̃k+1Fk

Another look at the normal equations. The system

D0 U0

U>
0 D1 U1

U>
1

.

. . . Dk−1 Uk−1

U>
k−1 D•

k

x•0
x•1
...

x•k−1

x•k

=

c0

c1
...

ck−1

ck

is symmetric block tridiagonal.

5

Reduced equations. Before considering the inclusions of observations at time k (Akxk ≈
bk) we can consider the reduced system

A0

−F0 I
A1

−F1 I
. . .

−Fk−1 I

y0

y1
...

yk−1

yk

≈

b0

0
...

bk−1

0

Theorem The vector

(x0|k−1, x1|k−1, . . . , xk−1|k−1, Fk−1xk−1|k−1︸ ︷︷ ︸
xk|k−1

)>

is the weighted least square solution to the reduced system.

Proof. Denote Sk as above, and

W̃k =

W0

W̃1

W1

. . .

W̃k

to the weight matrix. The matrix for the normal equations is

S>k W̃kSk =

D0 U0

U>
0 D1 U1

U>
1

.

. . . Dk−1 Uk−1

U>
k−1 W̃k

=

=

A>
k−1Wk−1Ak−1 0

0 0

 +

0 0

0
F>

k−1W̃kFk−1 Uk−1

U>
k−1 W̃k

and the right–hand side is
(c0, . . . , ck−1, 0)>.

It is simple to prove that the proposed solution satisfies the equations. ¤

6

A direct block method. If we only want to solve the last unknown x•k = xk|k, we can
apply an elimination technique to reach the upper block triangular form

E0 U0

E1 U1

.

Ek−1 Uk−1

E•
k

x•0
x•1
...

x•k−1

x•k

=

d0

d1
...

dk−1

dk

by using the well–known tridiagonal algorithm

E0 := D0

d0 := c0

for j = 1 : k − 1

Ej := Dj − U>
j−1E

−1
j−1Uj−1

dj := cj − U>
j−1E

−1
j−1dj−1

end for

E•
k := D•

k − U>
k−1E

−1
k−1Uk−1

dk := ck − U>
k−1E

−1
k−1dk−1

xk :=solve(E•
k , dk)

The same elimination process applied to the reduced equations yields

E0 U0

E1 U1

.

Ek−1 Uk−1

H•
k

y•0
y•1
...

y•k−1

y•k

=

d0

d1
...

dk−1

e•k

where

H•
k := W̃k − U>

k−1E
−1
k−1Uk−1 = E•

k − A>
k WkAk

e•k := −U>
k−1E

−1
k−1dk−1 = dk − A>

k Wkbk = dk − ck.

The next step. The equality Dk = D•
k + F>

k W̃k+1Fk implies, that the next step only
requires the following calculations

Ek := E•
k + F>

k W̃k+1Fk

D•
k+1 := W̃k+1 + A>

k+1Wk+1Ak+1

Uk := −F>
k W̃k+1

E•
k+1 := D•

k+1 − U>
k E−1

k Uk

dk+1 := ck+1 − U>
k E−1

k dk

7

The method as a whole. Notice that we can write all the steps in the preceding
recursive way. Notice however that this scheme does not use the solutions at previous
states, unlike the true Kalman filter implementation.

D•
0 := A>

0 W0A0

E•
0 := D•

0

d0 := A>
0 W0b0

x•0 :=solve(E•
0 , d0)

for j = 1 : k

Ej−1 = E•
j−1 + F>

j−1W̃jFj−1

D•
j := W̃j + A>

j WjAj

Uj−1 := −F>
j−1W̃j

E•
j := D•

j − U>
j−1E

−1
j−1Uj−1

dj := A>
j Wjbj − U>

j−1E
−1
j−1dj−1

x•j :=solve(E•
j , dj)

end for

Writing the program in a more computational way, we can see the memory require-
ments of the algorithm.

A := A0; b := b0 % storage of observations

W := W0; % storage of weights

D• := A>WA

E• := D•

d := A>Wb

x :=solve(E•, d)

for j = 1 : k

F := Fj−1; W̃ := W̃j % storage of the state equation

U := −F>W̃

E = E• + F>W̃F

A := Aj; b := bj; W := Wj

D• := W̃ + A>WA

E• := D• − U>E−1U

d := A>Wb− U>E−1d

x• :=solve(E•, d)

end for

8

4 A proof of the Kalman filter recursion

Lemma Let C and P be invertible. Then the inverse of

Q := P − PB>(BPB> + C−1)−1BP

is
Q−1 = P−1 + B>CB.

Proof. It can be easily proven by direct verification. Also we can easily see that
[

C−1 + BPB> −BP
−PB> P

]
=

[
I 0
× I

] [× ×
0 Q

]

(× is used in positions we are not interested in). Inverting both sides

[
C CB

B>C P−1 + B>CB

]
=

[× ×
0 Q−1

] [
I 0
× I

]

Comparison of blocks (2, 2) gives the result. ¤

Theorem For all k
P−1

k|k = E•
k , P−1

k|k−1 = H•
k .

Proof. The couple (H•
k , E•

k) is given by the recurrence

H•
k = W̃k − W̃kF

>
k−1(E

•
k−1 + Fk−1W̃kFk−1)

−1Fk−1W̃k,

E•
k = H•

k + A>
k WkAk

starting at E•
0 = A>

0 W0A0. On the other hand, the couple (Pk|k−1, Pk|k) satisfies the
recurrence

Pk|k−1 = W̃−1
k + Fk−1Pk−1|k−1F

>
k−1,

Pk|k = Pk|k−1 − Pk|k−1A
>
k (AkPk|k−1A

>
k + W−1

k)−1AkPk|k−1

starting with P0|0 = (A>
0 W0A0)

−1. The lemma clearly shows that both recurrences are
equivalent. ¤

Theorem For all k
xk|k = (I −KkAk)xk|k−1 + Kkbk.

Proof. Notice first that by the preceding result and the form of the corresponding normal
equations and their solutions

P−1
k|kxk|k = dk

P−1
k|k−1xk|k−1 = dk − A>

k Wkbk

9

and also
P−1

k|k (I −KkA− k) = P−1
k|k−1.

The result is then equivalent to showing that

Pk|kdk = Pk|kdk − Pk|kA
>
k Wkbk + Kkbk

but
Pk|kA

>
k Wk = Kk

as can be deduced from the definiyos of Pk|k and Kk. ¤

Further reading and sources

Gilbert Strang. Introduction to Applied Mathematics. Wellesley–Cambridge.

Gilbert Strang. Linear Algebra, Geodesy and GPS. Wellesley–Cambridge.

Neil Gershhenfeld. The Nature of Mathematical Modeling. Cambridge University Press,
1999 (chapter 15).

by F.–J. Sayas
Mathematics, Ho!, May, 2001

Mathematics, Ho! is a personal project for individual and comunal achievement in higher Maths among Mathematicians, with a bias to

Applied Mathematics. It is a collection of class notes and small courses. I do not claim entire originality in these, since they have been much

influenced by what I report as references. Conditions of use. You are allowed to use these pages and to share this material. This is by

no means aimed to be given to undergraduate students, since the style is often too dry. Anyway you are requested to quote this as a source

whenever you make extensive use of it. Note also that this is permanently work in progress.

10

