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1 Definitions

Notations. Given a vector x ∈ CN , we denote

‖x‖ =
√

x∗x.

The symbol ∗ denotes conjugate transposition. Therefore, for a complex matrix A, A∗ is
its adjoint (conjugate transposed).

The problem. Solve a square linear system

Ax0 = b

where the conditioning of A is very large.

Minimum energy solutions. Given δ > 0 (which we will call discrepancy),

‖x‖ = min!, ‖Ax− b‖ ≤ δ

Notice that
x = 0 ⇐⇒ ‖b‖ ≤ δ.

Proposition The minimun energy solution exists and is unique.

Proof. Its an elementary convexity argument. ¤

Tikhonov1 regularization. Given α > 0

α‖xα‖2 + ‖Axα − b‖2 = min!, x ∈ CN .

• as α → 0, then xα → x0

• as α →∞, then xα → 0.

To calculate the Tikhonov regularized solution of parameter α, we have solve the system

(αI + A∗A)xα = A∗b.

1for Spanish speakers, Tijonov is the right form
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Proposition Given δ and α, let xα be the Tikhonov reularized solution to the system.
If

‖Axα − b‖ = δ,

then xα is the minimun energy solution.

Proof. Let x be such that ‖Ax− b‖ ≤ δ. Then

α‖xα‖2 = α‖xα‖2 + ‖Axα − b‖2

≤ α‖x2‖+ ‖Ax− b‖2

≤ α‖x‖2 + δ2

and therefore ‖xα‖ ≤ ‖x‖. ¤

Consequence. If δ < ‖b‖, to find the minimun energy solution, find a root of

G(α) := ‖Axα − b‖2 − δ2 = ‖A(αI + A∗A)−1A∗b− b‖2 − δ2.

The hypothesis means that the discrepancy level is smaller than data.

2 Two views on the problem

Lagrange multipliers. When solving the problem

‖x‖2 = min!, ‖Ax− b‖2 ≤ δ2.

one faces two possibilities:

• The minimun is reached in the interior. The only local extremal point is x = 0.
Therefore, this possibility holds if and only if

‖b‖ < δ.

Ii is the absolute minimun.

• The minimum is attained in the boundary, and we are the solving

‖x‖2 = min!, ‖Ax− b‖2 − δ2 = 0.

The associated Lagrangian is

L(x, λ) := ‖x‖2 + λ
[‖Ax− b‖2 − δ2

]

and the extrema are the solutions of the system in RN × R
x + λ(A∗Ax− A∗b) = 0

‖Ax− b‖2 = δ2

Each solution (x, λ) satisfies that x = x1/λ and therefore the Tikhonov regularization
parameter matching the condition is the inverse of the Lagrange multiplier.
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The singular value decomposition view. We recall the SVD of a square invertible
matrix

A = PΣQ∗, Σ =




σ1

σ2

. . .

σn




being P and Q unitary matrices, and σj > 0 for all j (σj are the singular values). Then
the inverse of A is QΣ−1P ∗ and

A∗A = QΣ2Q∗.

Hence the equations (αI + A∗A)xα = A∗b are equivalent to

Q(αI + Σ2)Q∗xα = QΣP ∗b

which implies that

xα = Q (αI + Σ2)−1Σ︸ ︷︷ ︸
=: Σα

P ∗b, Σα =




σ1

α + σ2
1

. . .
σn

α + σ2
n




(compare Σα with Σ−1). If

P ∗b = f = (f1, . . . , fn)>,
∑

j

|fj|2 = ‖b‖2

‖Axα − b‖2 = ‖PΣQ∗QΣαP ∗b− PP ∗b‖2

= ‖P (Σ Σα − I)P ∗b‖2

= ‖(Σ Σα − I)f‖2

=
∑

j

[ σ2
j

α + σ2
j

− 1
]2

f 2
j

=
∑

j

α2

(α + σ2
j )

2
f 2

j ,

and therefore we solve

G(α) =
∑

j

α2

(α + σ2
j )

2
f 2

j − δ2 = 0

We remark that

• the singular values of A are σj

• those of A−1 are 1/σj

• the regularized singular values are σj/(α + σ2
j )

Ill–conditioning means that the quantity
maxj σj

minj σj

is large. Regularization flattens this ratio by clumping singular values.
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3 Computation: Newton’s method

The function G.

G(α) := ‖Axα − b‖2 − δ2 = ‖A(αI + A∗A)−1A∗b− b‖2 − δ2.

Basic algorithm. Starting with some α0 we iterate

αn+1 = αn − G(αn)

G′(αn)

stopping when
|αn − αn+1|

|αn| << 1.

Proposition If δ < ‖b‖, then

G(0) = −δ2 < 0 < ‖b‖2 − δ2 = lim
α→∞

G(α).

Moreover, G is strictly increasing.

Proof. From the definition of xα

(αI + A∗A)xα = A∗b

we deduce
x′α = −(αI + A∗A)−1xα, A∗(Axα − b) = −αxα

Then the derivative of G is

G′(α) =
d

dα

(
(Axα − b)∗(Axα − b)

)

= 2 Re
(
(Axα − b)∗Ax′α

)

= 2α Re x∗α(αI + A∗A)−1xα

= 2αx∗α(αI + A∗A)−1xα

and is positive for α > 0. ¤

Evaluation of G′. It can be done in three steps:

solve (αI + A∗A)xα = A∗b
solve (αI + A∗A)yα = xα

G′(α) = 2αx∗αyα

Notice that we have the following closed form for G′

G′(α) = 2αb∗A(αI + A∗A)−3A∗b.
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Proposition The second derivative of G admits all the following expressions

G′′(α) = b∗A(A∗A− 2αI)(αI + A∗A)−4b

= 2y∗α(A∗A− 2αI)yα

= 2x∗αyα − 6αy∗αyα,

being yα = (αI + A∗A)−1xα = −x′α.

Proof. From the last expression of G′ we derive

G′′(α) = 2b∗A(αI + A∗A)−3A∗b− 6αA(αI + A∗A)−4A∗b

= 2b∗A[I − 3α(αI + A∗A)−1](αI + A∗A)−3A∗b

= 2b∗A(A∗A− 2αI)(αI + A∗A)−4A∗b

since I − 3α(αI + B)−1 = (αI + B)−1(B − 2αI). Notice that matrices (λI + B)−1 and
(µI + B) commute and that

yα = (αI + A∗A)−2A∗b,

which gives the second expression. To obtain the third one, one simply has to notice that

A∗Ayα = xα − αyα.

¤

Algorithm (Newton). Starting at an adequete value of α

B := A∗A
c := A∗b
for it = 1 : itmax

M := B + αI
x :=solve(M, c)
y :=solve(M, x)
r := Ax− b % residual
g := r∗r − δ2 % function
gp := 2αx∗y % derivative
β := α− g/gp % Newton iteration
if |β − α|/|α| < tol

congergence reached at x
stop

end if
α = β % actualization

end for

by F.–J. Sayas
Mathematics, Ho!, 2001
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