MINIMUM ENERGY SOLUTIONS
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1 Definitions

Notations. Given a vector z € CV, we denote

The symbol * denotes conjugate transposition. Therefore, for a complex matrix A, A* is
its adjoint (conjugate transposed).

The problem. Solve a square linear system
Al’o =b

where the conditioning of A is very large.

Minimum energy solutions. Given § > 0 (which we will call discrepancy),
ol = mint, [ Az —b] <o

Notice that
=0 = 6] < 0.

Proposition The minimun energy solution exists and is unique.

Proof. Tts an elementary convexity argument. 0

Tikhonov! regularization. Given a > 0
allza|® + ||Are — b]|* = min!, z e CV.
e as a — 0, then z, — x¢
e as o — 00, then z, — 0.
To calculate the Tikhonov regularized solution of parameter «, we have solve the system

(al + A*A)x, = AD.

Hor Spanish speakers, Tijonov is the right form



Proposition Given 6 and «, let x, be the Tikhonov reularized solution to the system.

If
| Az, —b|| =,

then x,, 1s the minimun enerqgy solution.

Proof. Let x be such that [|[Ax — b|| < §. Then

allzall = afzal® + [|Aza — b
< afl2*|| + Az — o]
< aflz)* +0?

and therefore ||z,| < ||z O

Consequence. If § < ||b||, to find the minimun energy solution, find a root of
G(a) := ||Axy — b||* — 0% = [|A(ad + A*A) "L A" — b||* — 62

The hypothesis means that the discrepancy level is smaller than data.

2 Two views on the problem

Lagrange multipliers. When solving the problem
][> = min!,  [[Az —b]* < &%
one faces two possibilities:

e The minimun is reached in the interior. The only local extremal point is z = 0.
Therefore, this possibility holds if and only if

16l < 0.
[i is the absolute minimun.
e The minimum is attained in the boundary, and we are the solving
|lz||* = min!, | Az —b||*> — 6* = 0.
The associated Lagrangian is
Lla,A) = [l + A [ Az — b — &7
and the extrema are the solutions of the system in RV x R
T+ ANAAx — AD) = 0
Az~ b = &

Each solution (x, \) satisfies that © = x; /» and therefore the Tikhonov regularization
parameter matching the condition is the inverse of the Lagrange multiplier.



The singular value decomposition view. We recall the SVD of a square invertible
matrix
01
02
A= PXQ", Y=

Un
being P and () unitary matrices, and o; > 0 for all j (o; are the singular values). Then
the inverse of A is Q¥ ~!P* and
A*A = QX2Q*.
Hence the equations (al + A*A)x, = A*b are equivalent to
Q(al + ¥*)Q* 1, = QEP*b

which implies that
01

o+ o}

To = Q (al +XH)7'T P, Y, =
S—— On

=: 2,

a+o2

(compare X, with ¥71). If
Po=f=(fin f)Ts D IGE =10l

J

|Aza —b|?> = ||PSQ*QS.P*b — PP*b||?
= [|P(EZ.— )P’
= [(Z%. - Df|?

2

P '

P
; ((x—|—0j2-)2 J

and therefore we solve

2
_ - 2 2
Gla) = mej —0"=0
j J
We remark that

e the singular values of A are o;
e those of A" are 1/0;

e the regularized singular values are o;/(a + 07)

[ll-conditioning means that the quantity
max; o;
min; o;

is large. Regularization flattens this ratio by clumping singular values.

3



3 Computation: Newton’s method
The function G.

G(a) := ||Azy — b||* — 0% = [|A(ad + A*A) "L A" — b||* — 62

Basic algorithm. Starting with some o we iterate

G(an)

an+1 = an - G’(a )
n

stopping when

Proposition If § < ||b]|, then

G(0) = -0 <0< ||p)* = 6* = lim G(a).

Moreover, G is strictly increasing.

Proof. From the definition of z,
(al + A*A)z,, = A™D
we deduce
vl = —(al + A*A) 'z, A*(Az, — b) = —ax,
Then the derivative of G is

! d *
(o) = %<(Axa —b)* (AT — b))
= 2Re ((Axa — b)*Ax&)
= 2aRex’(al + A*A) 'z,
= 2ax’(al + A*A) ',

and is positive for a > 0.

Evaluation of G’. It can be done in three steps:

solve (al + A*A)x, = A*b
solve (al + A*A)y, = x4
G'(a) = 202t y,

Notice that we have the following closed form for G’

G'(a) = 2ab* A(al + A*A) 3 A*D.



Proposition The second derivative of G admits all the following expressions
G"(a) = b"A(A*A —2al)(al + A*A)~*b
= 2yr(A"A —2al)y,
= 22 Yo — 60Y. Ya,
being yo = (ol + A*A)'x, = -2/,

Proof. From the last expression of G’ we derive

G"(a) = 20"A(al + A*A) 3 A*b — 6aA(al + A*A)"*A*b
= 26°A[l — 3a(al + A*A) Y (al + A*A) 2 A*b
= 20"A(A*A —2al)(al + A*A)"*A*b

since I — 3a(al + B)™ = (al + B)™Y(B — 2al). Notice that matrices (Al + B)~! and
(ul + B) commute and that

Yo = (al + A*A)"2AD,
which gives the second expression. To obtain the third one, one simply has to notice that

A Ay, = xo — QY.

O
Algorithm (Newton). Starting at an adequete value of «
B .= A*A
c:= A"
for it =1 :itmax
M := B+ al
x :=solve(M, c)
y :=solve(M, x)
r:=Ar —b % residual
g =r*r — §> % function
gp = 2ax*y % derivative
B:=a—g/gp % Newton iteration
if |8 — a|/|a| < tol
congergence reached at x
stop
end if
a=p % actualization
end for
by F.—J. Sayas
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