MATH 353: Engineering Mathematics III - Section 012

From this homework assignment on, the axes in every graph you produce have to be labeled and the graph should have a title and, if needed, a legend.

1. (Computer -3 points) Define a function

$$
f(x)=x \sin \left(\frac{1}{x}\right)
$$

and evaluate it simultaneously at the points $0.01,0.02,0.03, \ldots, 0.5$.
2. (Computer + explanation -3 points) Explain what the following commands do:

```
>> m1=linspace(0,2,10);
>> m2=linspace(0,2,11);
```

In addition to running the lines, explain how many elements you get and what these elements are.
3. (Computer + explanation -4 points) Explain what the following lines do:

```
> A=[11 2 3 4 4;5 6 7 7 8;-1 -2 - -3 -4];;
>> A(:,2)+A(:,3)
>> A(3, end:-1:1)
>> size(A)
```

Once again, run the lines and explain what happens.
4. (Computer -5 points) Using fplot, show the graphs of

$$
\sin x, \quad \sin (2 x) \quad \sin (4 x)
$$

in the interval $[-2 \pi, 2 \pi]$. All of them should appear together in the same graph, with different colors or line styles. A legend should say which is which.
5. (Computer -10 points) Consider the following interpolation points

$$
(0,-1), \quad(1,2), \quad\left(\frac{3}{2},-1\right), \quad(2,2), \quad\left(\frac{1}{2},-1\right), \quad(3,2)
$$

(a) Using the function evaluatelagrange and a collection of points in the interval $[0,3]$, make a plot of the interpolation polynomial in these points. On top of the graph, plot the interpolation points. (Recall that we can put a circular marker on points by doing plot ($x, y,{ }^{\prime} o^{\prime}$).
(b) Repeat the exercise using now the divided difference function divideddiff and the nested evaluation of polynomials nested.
6. (Computer -5 points) We are given four points

$$
x_{1}=1.5, \quad x_{2}=2, \quad x_{3}=3.5, \quad x_{4}=4 .
$$

Plot the four Lagrange polynomials associated to these points in the same graph. To plot $L_{j}(j=1,2,3,4)$ you can use evaluatelagrange in a collection of points in [1.5,4] with properly chosen values of the y_{j} coordinates.
7. (By hand - 10 points) We are given five points, in this particular order:

$$
(1,-1), \quad(2,0), \quad(3,3), \quad(4,8), \quad(0,0)
$$

(a) Compute the divided differences corresponding to these points. Once you are done, compare with what you get using divideddiff.
(b) Write the quartic interpolation polynomial at these points. What is the effective degree of this polynomial? Can you say anything about where these five points are placed?

