MATH 353: Engineering Mathematics III - Section 012

Spring 2014 (F.-J. Sayas)
Homework \#5
Due March 28

1. (Review - do by hand -5 points) Assume that we are working with floating point numbers with only 5 digits. Every single operation you perform has to be rounded-off to five significant digits (the exponents are not an issue). Show what you get when you compute

$$
\frac{f(1.0001)-f(1)}{0.0001} \quad \frac{f(1.00001)-f(1)}{0.00001}
$$

if $f(x)=x^{3}$.
2. (Review - do by hand -5 points) Write the Newton formula for interpolation polynomial at the points

$$
(1,1), \quad(2,2), \quad(3,2), \quad(4,1) .
$$

Evaluate it at $3 / 2$ and evaluate its derivative at the same point.
3. (By hand -5 points) Exercise 5.1 in the book (page 252)
4. (By hand - 5 points) Exercise 5.2 in the book (page 252)
5. (Computer - 10 points) We want to check this double forward difference formula to approximate the derivative.

$$
\frac{-f\left(x_{0}+2 h\right)+4 f\left(x_{0}+h\right)-3 f\left(x_{0}\right)}{2 h} \approx f^{\prime}\left(x_{0}\right)
$$

(a) Write a testing device (like the functions testFwdDiff and testCentDiff in the Lab) to test that

$$
E_{h}=\left|\frac{-f\left(x_{0}+2 h\right)+4 f\left(x_{0}+h\right)-3 f\left(x_{0}\right)}{2 h}-f^{\prime}\left(x_{0}\right)\right| \approx C h^{2}
$$

(b) Check it with the function $f(x)=\exp (x)$ at $x_{0}=1$. Do experiments with $h=$ $0.1,0.01,0.001$ and verify that you get what you expect.
(c) Do a $\log \log$ plot of $\left(h, E_{h}\right)$ where $h=\left[\begin{array}{lll}0.5, & 0.25, & 0.125,\end{array} \ldots, \quad 2^{-10}\right]$. In the loglog plot, use circular markers and lines. On top of this plot, show the line $\left(h, h^{2}\right)$ to verify that the predicted behavior.
6. (By hand -5 points) Recall the Taylor expansion formula

$$
f(x+h)=f(x)+h f^{\prime}(x)+h^{2} \frac{1}{2} f^{\prime \prime}(x)+h^{3} \frac{1}{6} f^{\prime \prime \prime}(x)+h^{4} \frac{1}{24} f^{i v}(c),
$$

where c is unknown between x and $x+h$. Use it to show that

$$
\frac{f\left(x_{0}+h\right)-2 f\left(x_{0}\right)+f\left(x_{0}-h\right)}{h^{2}}=f^{\prime \prime}\left(x_{0}\right)+\mathcal{O}\left(h^{2}\right)
$$

where by $\mathcal{O}\left(h^{2}\right)$ we mean something that can be bounded above by $C h^{2}$.
7. (Computer -5 points) Follow the steps of Problem 5 to show that

$$
E_{h}=\left|\frac{f\left(x_{0}+h\right)-2 f\left(x_{0}\right)+f\left(x_{0}-h\right)}{h^{2}}-f^{\prime \prime}\left(x_{0}\right)\right| \approx C h^{2}
$$

for the function $f(x)=\log (x)$ at $x_{0}=1$ (Recall that for us -and for Matlab- \log is the natural logarithm.)

