MATH 353: Engineering Mathematics III - Section 012
Spring 2014 (F.-J. Sayas)
Lab \# 1
February 14

Free advice, maybe good after all. Matlab has been used by hundreds of thousands of individuals for quite some time. Google can find the answer to questions like: how do I define a base 10 logarithm in Matlab? how do I plot a function of one variable in Matlab? You'll probably be redirected to the online help of Matlab, which contains useful examples.

Open Matlab and move to the Desktop or to a folder where you can find your work at the end of the day. Set up the diary. Type these two lines

```
>> format long
>> format compact
```

1. Generate the list of numbers

3	6	9	12	15	18	21	24	27	30	33
-4	-4.5	-5	-5.5	\ldots	-10					

2. Let me show you and example of how to manually plot a function
```
>> f = @(x) x.^2-3*x.*sin(x);
>> x = 0:0.01:6*pi;
>> plot(x,f(x))
```

Copy it and run it. Can you figure out what we just did? Now repeat this for the function

$$
h(x)=\frac{x^{2}+2 x-4}{x^{4}+1} \cos (x)
$$

plotted in $(-2,2)$ using one hundred points at least.
3. Compare the values obtained by evaluation of the two mathematically identical functions

$$
f(t)=(t+2)^{3}-(t+1)^{3} \quad g(t)=3 t^{2}+9 t+7
$$

for $t=10^{9}$. Which one seems to be closer to the exact value? Why?
4. How far can you go in the evaluation of the function

$$
f(x)=x^{x}
$$

before the Matlab output is ∞ ?
5. Figure out how to use fplot to plot functions without evaluating them yourself and use it to get a plot of

$$
\frac{1}{1+x^{2}}
$$

in the interval $(-3,3)$.
6. Guess work. Here's a function:
$f=@(x)(x . \wedge 2+1) \cdot *(x>=1) ;$
Can you write it in mathematical terms? (Hint. Figure out what $x>=1$ does. You will need some kind of brackets to define the function.)
7. Use a single instruction to generate the list

$$
\begin{array}{lllll}
1 & \frac{1}{2} & \frac{1}{3} & \ldots & \frac{1}{10}
\end{array}
$$

(Hint. 1 over the list of numbers from 1 to 10.)
8. Give a good computational strategy to evaluate the function

$$
\sqrt{x^{2}+1}-x
$$

for very large values of x. (Hint. Multiply and divide by $\sqrt{x^{2}+1}+x$.)
9. Compare the functions

$$
\frac{x^{2}}{x^{2}+1} \quad \text { and } \quad \frac{1}{1+\frac{1}{x^{2}}}
$$

for $x=10^{200}$. (Note that you can write this number as 1 e 200 , meaning 1×10^{200}.)

