MATH 353: Engineering Mathematics III - Section 012

1. We are given a square matrix

$$
A=\left[\begin{array}{llll}
1 & 3 & 1 & 0 \\
0 & 1 & 3 & 1 \\
0 & 1 & 1 & 3 \\
3 & 1 & 1 & 0
\end{array}\right]
$$

Use the Matlab inbluilt function lu and produce a lower triangular matrix L , an upper triangular matrix U and a permutation matrix P , such that $\mathrm{PA}=\mathrm{LU}$. Once you have these three matrices, verify that $\mathrm{PA}=\mathrm{LU}$.
2. Do the same for an $N \times N$ matrix

$$
\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right]
$$

built and stored as a sparse matrix. (Use spdiags for this.) Copy the results for $N=5$. If you want to see the numbers as fractions, try format rat.
3. Take now a general square matrix A. You are going to build a Matlab function

```
function y=powermethod(A,x,M)
```

that computes the following iteration: a vector \mathbf{x}_{0} is given and we then compute

$$
\mathbf{z}_{n+1}=\mathrm{A} \mathbf{x}_{n}, \quad \mathbf{x}_{n+1}=\frac{1}{\max z_{n+1, i}} \mathbf{z}_{n+1}, \quad n=1, \ldots, M .
$$

It is possible to show that, with probability one, the vectors \mathbf{x}_{n} converge to a vector \mathbf{x} such that $\mathrm{Ax}=\lambda \mathbf{x}$, where λ is the eigenvalue of A with largest absolute value. To do:
(a) Build the function powermethod
(b) Use the matrix of Exercise 2 with $N=5$ and check that with increasing values of M and, independently of what \mathbf{x}_{0} is, you get to the same vector \mathbf{y}. (Call me when you are done with this.)
(c) Check then that Ay and \mathbf{y} are proportional to each other. The proportion is the eigenvalue.
(d) Repeat the exercise and compute the largest eigenvalue of the matrix of Exercise 2, for increasing $N=5,6,7, \ldots, 20$. Let's call it λ_{N}. Plot $\left(N, \lambda_{N}\right)$.

