MATH 353: Engineering Mathematics III - Section 012

Spring 2014 (F.-J. Sayas)
Lab \# 6
March 21

1. Check numerically the accuracy of the following approximation of the second derivative

$$
f^{\prime \prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)}{h^{2}} .
$$

To do that compare the results for the function $f(x)=\exp (2 x)$ at $x_{0}=1$. (You just need to make some small modifications to today's class script.)
2. Check numerically the accuracy of the following double backward differentiation formula:

$$
f^{\prime}\left(x_{0}\right) \approx \frac{\frac{3}{2} f\left(x_{0}\right)-2 f\left(x_{0}-h\right)+\frac{1}{2} f\left(x_{0}-2 h\right)}{h} .
$$

To do that compare the results for the function $f(x)=\exp (2 x)$ at $x_{0}=1$. (You just need to make some small modifications to today's class script.)
3. Following what we have done today. You have a sequence of errors E_{h} depending on a parameter h. They are shown in the following table (h on the left column, E_{h} on the right):

```
>> [h' err']
ans =
    0.500000000000000 0.250000000000000
    0.250000000000000 0.062500000000000
    0.125000000000000 0.015625000000000
    0.062500000000000 0.003906250000000
    0.031250000000000 0.000976562500000
    0.015625000000000 0.000244140625000
    0.007812500000000 0.000061035156250
    0.003906250000000 0.000015258789063
    0.001953125000000 0.000003814697266
    0.000976562500000 0.000000953674316
```

We claim that $E_{h} \approx C h^{p}$ for some p to be determined.
(a) Justify the formula

$$
\log \left(\frac{E_{h_{1}}}{E_{h_{2}}}\right) \approx p \log \left(\frac{h_{1}}{h_{2}}\right)
$$

(b) Use it to figure out what p is.
(c) Make a loglog plot of $\left(h, E_{h}\right)$. (You need to get a check from me here.) What is the slope of the line you obtain?

