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MEET YOUR COMPUTER
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Some lists of numbers

>> format compact % Eliminates unnecessary blank lines
>> 1:7
ans =

1 2 3 4 5 6 7
>> 1:2:9 % in twos
ans =

1 3 5 7 9
>> 1:2:10 % goes in 2s, never passing 10
ans =

1 3 5 7 9
>> 5:-1:2 % negative increments
ans =

5 4 3 2
% Guess the following ones
>> 1:0.1:2
>> 1:-1:2 % Empty list
>> 1:3:10
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Some functions

Note the symbols .* and .ˆ

>> f = @(x) x.^2+2*x.*(1-x)+8 % @(x) says x is the variable
f =

@(x)x.^2+2*x.*(1-x)+8
>> f(0) % Evaluate f at 0
ans =

8
>> f(1)
ans =

9
>> f(2)
ans =

8
>> f(0:2) % We can do this because of .* and .^
ans =

8 9 8
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Exercises

Define the function

g = x3 + 3 cos(x) (2− x)

and evaluate it simultaneously at the points

0,0.2,0.4, . . . ,2.

Figure out how to use fplot to draw the graph of g in the
interval [0,2].
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FLOATING POINT NUMBERS
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Warning words

Computers and calculators work with numbers in floating
point in base 2. However, when they usually show results in
floating point in base 10.

In this section we will cheat by showing everything in base 10.
There will be a mismatch with the base 2 representation, and
we will see some strange behavior w.r.t. precision.
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Floating point numbers

Moving the point

Every real number (except zero) can be written as

±0.m1m2m3...× 10n, n integer, m1 6= 0.

n is called the exponent and m1m2 . . . is called the mantissa.

For instance,

1/3 = 0.333333 . . .× 100, 4/3 = 0.133333 . . .× 101,

1/11 = 0.0909090.... = 0.9090909 . . .× 10−1

Note that

1 = 0.1× 101 = 0.99999999 . . .× 100
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Storing a number

1 Check if the number is zero (0 is stored in a specific way)
2 Look at the sign at take it out
3 Write the unsigned number in floating point form

0.m1m2m3...× 10n, n integer, m1 6= 0.

4 Limit magnitude (nmin is negative, nmax is positive):

nmin ≤ n ≤ nmax,

If n > nmax assign∞, or give overflow. If n < nmin assign 0
or give underflow.

5 Limit precision: store a fixed number of digits, say K ,
(round–off the last one!) 0.m1m2... ≈ 0.m1m2...mK−1m̃K

m̃K =

{
mK , if mK+1 ∈ {0,1,2,3,4},
1 + mK , if mK+1 ∈ {5,6,7,8,9}.

If mK = 9 and mK+1 ≥ 5, round–off has to be carried to the
left.
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Example
(warning: these are not the usual parameters)

With the artificial limits (these are not the one used by
computer and calculators!)

−10 ≤ n ≤ 10, K = 5,

we write

4
3

fl.pt
= 0.13333× 100,

130
6

= 21.666 . . .
fl.pt
= 0.21667× 102,

−516 = −152587890625

= −0.152587890625× 1012 fl.pt
= −∞

5−16 = 6.5536× 10−12 = 0.65536× 10−11 fl.pt
= 0

0.899999932
fl.pt
= 0.90000
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Example (cont’d) −10 ≤ n ≤ 10, 5 decimal digits

The smallest positive number is 0.1000× 10−10. To its left
there’s 0.
The largest positive number is 0.99999× 1010. The
number 1010 is not stored anymore. It is infinity.
In between, for a given exponent we have numbers ranging

from 0.10000× 10n to 0.99999× 10n

This means that there are 89999 different numbers
between 1 and 10, between 10 and 100, etc... but also
between 0.0001 and 0.001. The closer we are to zero, the
more numbers there are.
The machine–ε is the distance between 1 and the following
number on the right, that is,

ε = 0.10001×101−0.10000×101 = 0.00001×101 = 0.0001.

There are no numbers stored between 1 and 1 + ε.
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Exercise

With arbitrary magnitude and a precision of 3 decimal digits,
store and compute (each computation has to be carried out
after storing the numbers that appear in it!):

1 1/6
2 4372
3 4370
4 4370-4372
5 1000+1
6 π
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The double precision standard

In MATLAB, the magnitudes are more or less limited like

−323 ≤ n ≤ 308

and the precision is of 16 digits.
A 16–digit precision (not exactly 16 digits, because
numbers are stored in base 2) is called double precision.
The single precision standard involves more or less 8
digits.
Some languages still keep the choice between single and
double precision.
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Large and small numbers in MATLAB

>> 2^1023
ans =

8.988465674311580e+307

>> 2^1024
ans =

Inf

>> 2^(-1074)
ans =

4.940656458412465e-324

>> 2^(-1075)
ans =

0

>> eps % MACHINE EPSILON
ans =

2.220446049250313e-016
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What we see on the screen

Computers and calculators show large and small numbers
written in scientific notation

1.243e+23 = 1.243× 1023

instead of in the floating point standard

0.1243× 1024.

Normal sized numbers are shown without exponent

(2.2)4 = 23.4256

Real numbers are sometimes shown as integers

(2.0)5 = 32

Calculators make the transition from integers to floating
point numbers when numbers become very large.
MATLAB does not deal with integers at all.
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What we see vs. what we compute

MATLAB computes always in double precision, even if it doesn’t
show all the digits:

>> format short % this is the default format
>> 2^100
ans =

1.2677e+030

>> format long
>> 2^100
ans =

1.267650600228229e+030 % look at the fifth digit!
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Arithmetic effects of floating point

The operations that most suffer from limited precision are the
addition and the subtraction. The operations that most suffer
from limited magnitude are product and division.

With the double precision standard

1 + 10−23 fl.pt
= 1, 100− 10−16 fl.pt

= 100

10200 × 10200 fl.pt
= +∞, 10−200 × 10−200 fl.pt

= 0.

To avoid (as much as possible):
adding numbers with very different magnitude
subtracting very similar numbers
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Subtraction

Subtraction is a very precision–losing operation:

0.333333456789− 0.333333 = 0.000000456789
= 0.45678900000× 10−6

Even worse, because the operation is done with binary digits,
we get ‘numerical garbage’ on the right

>> 0.333333456789-0.333333
ans =

4.567890000140018e-007
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Foreseeing trouble

Evaluating the function
√

x + 1−
√

x

for large x is asking for trouble. Instead, we can evaluate(√
x + 1−

√
x
) √x + 1 +

√
x√

x + 1 +
√

x
=

1√
x + 1 +

√
x
,

that has no subtractions.

>> f = @(x) sqrt(x+1)-sqrt(x) ;
>> g = @(x) 1./(sqrt(x+1)+sqrt(x));
>> f(10^10)
ans =

4.999994416721165e-006
>> g(10^10) % we can expect this value to be better
ans =

4.999999999875000e-006
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Exercises

Compare the values obtained by evaluation of the two
mathematically identical functions

f (x) = (x + 1)2 − x2 g(x) = 2 x + 1

for x = 1010.

Compare the values given (if at all) by evaluation of the
mathematically identical functions

f (x) =
x1000

x1000 + 1
g(x) =

1
1 + x−1000

when x = 10.
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