# MATH 353 Engineering mathematics III 

Instructor: Francisco-Javier ‘Pancho’ Sayas

Spring 2014 - University of Delaware

## LAGRANGE INTERPOLATION

## A simple problem

Find the equation for the line going through

$$
\left(x_{1}, y_{1}\right) \quad \text { and } \quad\left(x_{2}, y_{2}\right)
$$

Here's the solution:

$$
y=y_{1} \frac{x-x_{2}}{x_{1}-x_{2}}+y_{2} \frac{x-x_{1}}{x_{2}-x_{1}} .
$$

- How do we know? Just check that the result is correct!
- Note that there's only one line going through two points



## Another look

Here's the same equation again

$$
y=y_{1} \underbrace{\frac{x-x_{2}}{x_{1}-x_{2}}}_{L_{1}(x)}+y_{2} \underbrace{\frac{x-x_{1}}{x_{2}-x_{1}}}_{L_{2}(x)}
$$

In red we emphasize data. Look now at the polynomials $L_{1}$ and $L_{2}$ :

$$
\begin{array}{ll}
L_{1}\left(x_{1}\right)=1 & L_{1}\left(x_{2}\right)=0 \\
L_{2}\left(x_{1}\right)=0 & L_{2}\left(x_{2}\right)=1
\end{array}
$$

The polynomials $L_{1}$ and $L_{2}$ depend on where we have data ( $x_{1}$ and $x_{2}$ ), but they do not use the $y$ values in their definition.

## A slightly more complicated problem

Find the equation for the parabola going through

$$
\left(x_{1}, y_{1}\right), \quad\left(x_{2}, y_{2}\right), \quad \text { and } \quad\left(x_{3}, y_{3}\right)
$$

First idea (not a good one): write

$$
y=a+b x+c x^{2}
$$

and use the conditions

$$
y_{i}=a+b x_{i}+c x_{i}^{2} \quad i=1,2,3
$$

to find the coefficients $a, b, c$. There's a better idea in the next slide. (It's such a good idea, that it's the solution to the problem.)

$$
\begin{aligned}
P(x)= & y_{1} \underbrace{\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}}_{L_{1}(x)}+y_{2} \underbrace{\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}}_{L_{2}(x)} \\
& +y_{3} \underbrace{\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}}_{L_{3}(x)}
\end{aligned}
$$

Check that this is the solution! Actually, check the following

$$
\begin{array}{lll}
L_{1}\left(x_{1}\right)=1 & L_{1}\left(x_{2}\right)=0 & L_{1}\left(x_{3}\right)=0 \\
L_{2}\left(x_{1}\right)=0 & L_{2}\left(x_{2}\right)=1 & L_{2}\left(x_{3}\right)=0 \\
L_{3}\left(x_{1}\right)=0 & L_{3}\left(x_{2}\right)=0 & L_{3}\left(x_{3}\right)=1 .
\end{array}
$$

## Apply to a particular example

The points are $(0.5,0.3),(1,0.7)$ and (2, -0.4).

$$
\begin{aligned}
P(x)= & 0.3 \underbrace{\frac{(x-1)(x-2)}{(0.5-1)(0.5-2)}}_{L_{1}(x)}+0.7 \underbrace{\frac{(x-0.5)(x-2)}{(1-0.5)(1-2)}}_{L_{2}(x)} \\
& -0.4 \underbrace{\frac{(x-0.5)(x-1)}{(2-0.5)(2-1)}}_{L_{3}(x)}
\end{aligned}
$$

You can simplify this formula if you are willing to waste your time. We will not do it (in principle, you shouldn't do it unless especifically requested!). The formula for $P(x)$ is complicated but the computer will not care.

## A figure of what we just did: interpolation

The points are ( $0.5,0.3$ ), ( $1,0.7$ ) and ( $2,-0.4$ ).


The relevant values are $x_{1}=0.5, x_{2}=1$ and $x_{3}=2$. Can you see which one is $L_{1}$ ?


## Let's think about this problem

Given three points

$$
\left(x_{1}, y_{1}\right), \quad\left(x_{2}, y_{2}\right), \quad \text { and } \quad\left(x_{3}, y_{3}\right)
$$

with $x_{1}, x_{2}$ and $x_{3}$ distinct, we found a polynomial $P(x)$ of degree 2 (or less) such that

$$
P\left(x_{1}\right)=y_{1}, \quad P\left(x_{2}\right)=y_{1}, \quad \text { and } \quad P\left(x_{3}\right)=y_{3} .
$$

Are there more polynomials (of the same degree or less) satisfying these conditions? The answer is no. Here's why! If $Q$ also satisfied this conditions, then

$$
R(x)=P(x)-Q(x)
$$

is a polynomial of degree two or less satisfying

$$
R\left(x_{1}\right)=0, \quad R\left(x_{2}\right)=0, \quad R\left(x_{3}\right)=0 .
$$

A quadratic polynomial cannot have three roots unless it is the zero polynomial. In other words, $R(x)=0$ and $P(x)=Q(x)$. Our problem has a unique solution and we just gave the formula for it.

## General polynomial interpolation problem

## Lagrange polynomial interpolation problem

Given points

$$
\left(x_{i}, y_{i}\right), \quad i=1, \ldots, n+1
$$

with distinct $x_{i}$, find a polynomial $P(x)$ of degree $n$ or less satisfying

$$
P\left(x_{i}\right)=y_{i} \quad i=1, \ldots, n+1
$$

Theorem. The Lagrange polynomial interpolation problem above has a unique solution. Important argument. We will give a formula for the solution. The argument showing that the solution is unique is similar to what we did in the quadratic case.

## The Lagrange formula...

... for the Lagrange interpolation problem
Define the polynomials (for $k=1, \ldots, n+1$ )

$$
L_{k}(x)=\frac{x-x_{1}}{x_{k}-x_{1}} \ldots \frac{x-x_{k-1}}{x_{k}-x_{k-1}} \frac{x-x_{k+1}}{x_{k}-x_{k+1}} \ldots \frac{x-x_{n+1}}{x_{k}-x_{n+1}}
$$

The polynomials have degree exactly $n$ and satisfy

$$
L_{k}\left(x_{i}\right)= \begin{cases}1 & i=k, \\ 0, & i \neq k\end{cases}
$$

Then

$$
P(x)=y_{1} L_{1}(x)+y_{2} L_{2}(x)+\ldots+y_{n+1} L_{n+1}(x)
$$

is the solution to the interpolation problem.

## Towards the code

We want to evaluate

$$
y_{k} \frac{x-x_{1}}{x_{k}-x_{1}} \cdots \frac{x-x_{k-1}}{x_{k}-x_{k-1}} \frac{x-x_{k+1}}{x_{k}-x_{k+1}} \cdots \frac{x-x_{n+1}}{x_{k}-x_{n+1}} .
$$

We want to be able to do this when $x$ contains a lot of valus of the $x$ variable in form of an array. Here's how we loop...

```
c=y (k);
for \(j=[1: k-1, k+1: n+1]\)
    \(c=c . *(X-x(j)) . /(x(k)-x(j)) ;\)
end
```

Note that

$$
[1: k-1, k+1: n+1]
$$

is the list of numbers from 1 to $n+1$ missing $k$

```
function \(Y=e v a l u a t e l a g r a n g e(x, y, X)\)
\% Y=evaluatelagrange (x,y,X)
응
\% Input:
\% \(\quad\) x \(\quad\) vector with \(n+1\) entries (points x_i)
\% y : vector with n+1 entries (points y_i)
\% X : points where we want to evaluate
\% Output:
\% Y : values of the interpolant \(P\) at the points \(X\)
\(\mathrm{Y}=0\);
n=length (x) - 1 ;
for \(k=1: n+1\)
    c=y (k);
    for \(j=[1: k-1, k+1: n+1] \quad\) \% list of 1 to \(n+1\) w/o \(k\)
        \(c=c . *(X-x(j)) . /(x(k)-x(j)) ;\)
    end
    \(Y=Y+c\);
end
return
```

