## MATH 353: Engineering Mathematics III - Section 012

Important. Whenever you write a function, don't forget to include the help lines. The axes in all plots have to be labeled. Absolutely no late homework.

1. (By hand + Computer) We have the following matrices

$$
\mathrm{A}=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-2 & 0 & 3 \\
4 & 5 & 7
\end{array}\right], \quad \mathrm{L}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & 3 & 1
\end{array}\right], \quad \mathrm{U}=\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

that satisfy $\mathrm{A}=\mathrm{LU}$. (You do not need to check this.) Let now

$$
\mathbf{b}=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Solve the following systems by hand

$$
\mathrm{Ly}=\mathbf{b} \quad \text { and then } \quad \mathrm{Ux}=\mathbf{y} .
$$

Compare it with the Matlab solution of the system $\mathbf{A x}=\mathbf{b}$.
2. (By hand) Give a mathematical argument that shows that if $\mathrm{A}=\mathrm{LU}$ and you solve the triangular systems $\mathrm{Ly}=\mathbf{b}$ and $\mathrm{Ux}=\mathbf{y}$, then you have solved the system $\mathrm{Ax}=\mathbf{b}$.
3. (By hand) Assume that we have a matrix A and we have been able to write

$$
\mathrm{PA}=\mathrm{LU},
$$

where

- P is a permutation matrix
- L is a lower triangular matrix
- U is an upper triangular system.

What can you do to solve a system $\mathbf{A x}=\mathbf{b}$ if you know the above decomposition? (Hint. Think of the equivalent system $\mathrm{PAx}=\mathrm{Pb}$ and use the idea of the previous exercise.)
4. (By hand + Computer) Consider the matrix

$$
\mathrm{Q}=\left[\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{6} & 1 \sqrt{6} & -2 / \sqrt{6}
\end{array}\right] .
$$

Show (by hand) that it is an orthogonal matrix. Solve by hand the system $\mathrm{Qx}=\mathbf{b}$, where

$$
\mathbf{b}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

(Hint. If you know what you have to do, this takes two minutes.) Compare it with the Matlab solution of the system.
5. (By hand + Computer) Here's a funny example I found in the wikipedia

$$
\mathrm{A}=\left[\begin{array}{ccc}
12 & -51 & 4 \\
6 & 167 & -68 \\
-4 & 24 & -41
\end{array}\right]=\mathrm{QR}
$$

where

$$
\mathrm{Q}=\left[\begin{array}{ccc}
6 / 7 & -69 / 175 & -58 / 175 \\
3 / 7 & 158 / 175 & 6 / 175 \\
-2 / 7 & 6 / 35 & -33 / 35
\end{array}\right] \quad \mathrm{R}=\left[\begin{array}{ccc}
14 & 21 & -14 \\
0 & 175 & -70 \\
0 & 0 & 35
\end{array}\right]
$$

(a) Use Matlab to verify that $\mathrm{A}=\mathrm{QR}$ and that Q is an orthogonal matrix.
(b) Consider the system

$$
\mathrm{R} \mathbf{x}=\mathrm{Q}^{\top} \mathbf{b} \quad \text { where } \quad \mathbf{b}=\left[\begin{array}{c}
-102 \\
544 \\
167
\end{array}\right]
$$

Solve it by hand. Compare it with the Matlab solution.
(c) Give an argument that shows that the solution of a system $R \mathbf{x}=\mathrm{Q}^{\top} \mathbf{b}$ is the same as the solution of $A \mathbf{x}=\mathbf{b}$ when $\mathrm{A}=\mathrm{QR}$ and Q is an orthogonal matrix.
6. (Computer) Modify the function heatForwardFD.m given in Lab $\# 11$ so that it becomes
[U, x, t]=heatreactionForwardFD(D,R,interval, T, u0, left, right, $N, M$ )
in order to solve the reaction-diffusion problem

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}-R u, \quad a<x<b, \quad 0<t \leq T
$$

( $D>0$ is the diffusivity, $R \geq 0$ is the reaction parameter), with initial condition at time $t=0$

$$
u(x, 0)=u_{0}(x) \quad a \leq x \leq b
$$

and two boundary conditions at $x=a$ and $x=b$ for all times

$$
u(a, t)=l(t), \quad u(b, t)=r(t) \quad 0<t \leq T
$$

Using the notations of the Lab, the time-stepping process computes for $n \geq 0$ :

$$
\frac{U_{i}^{n+1}-U_{i}^{n}}{k}=\mathrm{D} \frac{U_{i-1}^{n}-2 U_{i}^{n}+U_{i-1}^{n}}{h^{2}}-R U_{i}^{n} \quad i=1, \ldots, N
$$

so you can easily figure out what the process is. You need to provide:
(a) The new code. The modifications are minimal!
(b) A script (modify scriptMay3.m) to solve in the interval ( 0,2 ), with $T=1, u_{0}(x)=$ $x^{2}(2-x), D=0.3, R=0.1, l(t)=\sin (t), r(t)=\frac{1}{2} \sin (t)$. You will need to choose the discretization parameters $N$ and $M$ so that the method is stable.
(c) A snapshot of the solution at time $t=T$ computed with $N, M$. On top of that show the solution computed with $N, 2 M$. Be sure that you get very similar solutions. Otherwise, you might have a bug in your code.

