MATH 353: Engineering Mathematics III - Section 012

Spring 2013 (F.--J. Sayas) Homework \#3 bis Not collected/not graded

These are exercises so that you can practice for your exam. Before you start, this would be a great time to read Sections 3.1.1 and 3.1.2 in the book.

1. A very logical question. You are given three points

$$
\left(x_{1}, y_{1}\right), \quad\left(x_{2}, y_{2}\right), \quad\left(x_{3}, y_{3}\right)
$$

where the x_{i} are pairwise different. How many different polynomials of degree three or less go through these three points? (Hint. You are free to choose a foruth point and interpolate.)
2. Understanding Newton's formula. Imagine that we have points

$$
\left(x_{1}, f\left(x_{1}\right)\right), \quad\left(x_{2}, f\left(x_{2}\right)\right), \quad\left(x_{3}, f\left(x_{3}\right)\right), \quad\left(x_{4}, f\left(x_{4}\right)\right)
$$

and that

$$
f\left[x_{1}, x_{2}, x_{3}\right]=0, \quad f\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=0 .
$$

What is the actual degree of the interpolation polynomial through these points? Can you interpret this result graphically?
3. Comparing methods. (Exercises 3.1.1 and 3.1.2) For the following collections of points:
(a) $(0,1),(2.3),(3,0)$
(b) $(-1,0),(2,1),(3,1),(5,2)$
(c) $(0,-2),(2,1),(4,4)$
do the following:

- Write down the interpolating polynomial using Lagrange's formula. Do not simplify the result!
- Evaluate the previous formula at the point $x=1$.
- Compute the divided differences and write the interpolating polynomial in Newton's form. Do not simplify the result!
- Evaluate the last polynomial you got in $x=1$.

If you got everything right, the values at $x=1$ of both formulas (for each problem) should be the same. Why?
4. Working by hand, do the nested evaluation of the polynomial

$$
2-3(x-1)+4(x-1)(x+5)+3(x-1)(x+5)(x-4)
$$

at the points $x=2$ and $x=3$.
5. What does the following piece of code do? In particular, can you write down exactly what polynomial are we plotting, where and why?

```
>> xx=0:0.01:1;
>> yy=evaluatelagrange([0 0.5 1],[\begin{array}{lll}{0}&{0}&{1}\end{array}],xx);
>> plot(xx,yy)
```

6. If n is a positive integer, what numbers are we computing with these lines?
```
>> a=-1;b=1;
>> x=a+(0:1:n)*(b-a)/n;
```

Write a mathematical formula for general a and b and then substitute.
7. How about these ones?

```
>> a=-1;b=1;
>> x=(a+b)/2 + (b-a)/2*cos( (2*(1:n+1)-1)*pi/(2*n+2) );
```

Write a mathematical formula for general a and b and then substitute.

