MATH 353: Engineering Mathematics III - Section 012
Spring 2013 (F.-J. Sayas)
Lab \# 1
February 8

What you should have learned today

- To open Matlab, and to change the location of where you are so that you go to a recently created folder. To use diary to record your working session.
- Create a list of equispaced numbers, as in,...

$$
1: 0.1: 2 \quad\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right] \quad-1:-2:-10
$$

- Manipulate arrays (row vectors actually), with the symbols

These symbols define element-by-element operations. Element-by-element product, division, etc are called vectorized. One of the elements can be a scalar (that is, a number). In that case, you compute the operation of all elements of the list/array to that scalar.

- Get to know the usual mathematical functions
$\sin \cos \exp \quad \log$ abs sqrt
These functions are vectorized by default.
- Define anonymous functions of a single variable. Here's an example of the function

$$
f(x)=\sqrt{\frac{x+1}{x^{2}+2}}+\cos (3 x(2+x))
$$

programmed as follows

```
>> f = @(x) sqrt((x+1)./(x.^2+2)) + cos(3.*x.*(2+x));
```

Note the use of the vectorized for of division, multiplication and exponentiation. The goal is to be able to evaluate it at many points at the same time

```
>> f(0:0.1:1)
ans =
    1.7071 1.5478 1.0151 0.3099 -0.1609 ... -0.0946
```

- Understand loss of precision due to cancelations. Here's a good example:

$$
\sqrt{x+3}-\sqrt{x}=\frac{3}{\sqrt{x+3}+\sqrt{x}}
$$

For large x, the expression on the right is more precise than the one on the left. You should know why.

- Understand ways of avoiding numerical overflow and underflow.
- Free advice, maybe good after all. Matlab has been used by hundreds of thousands of individuals for quite some time. Google can find the answer to questions like: how do I define a base 10 logarithm in Matlab? how do I plot a function of one variable in Matlab? You'll probably be redirected to the online help of Matlab, which contains useful examples.

Exercises

1. Use a single instruction to generate the list of numbers

$$
\begin{array}{llllll}
-4 & -4.5 & -5 & -5.5 & \ldots & -10
\end{array}
$$

2. Define the function

$$
h(x)=\frac{x^{2}+2 x-4}{x^{4}+1} \cos (x)
$$

and plot it in $(-2,2)$ using plot and one hundred points at least.
3. Compare the values obtained by evaluation of the two mathematically identical functions

$$
f(x)=(x+1)^{2}-x^{2} \quad g(x)=2 x+1
$$

for $x=10^{10}$.
4. Compare the values given (if at all) by evaluation of the mathematically identical functions

$$
f(x)=\frac{x^{1000}}{x^{1000}+1} \quad g(x)=\frac{1}{1+x^{-1000}}
$$

when $x=10$.
5. Figure out how to use fplot to plot functions without evaluating them yourself and use it to get a plot of

$$
\frac{1}{1+x^{2}}
$$

in the interval $(-3,3)$.
6. Guess work. Here's a function:
$f=@(x)(x . \wedge 2+1) \cdot *(x>=1) ;$

Can you write it in mathematical terms?

