
MATH 353: Engineering Mathematics III – Section 012

Spring 2013 (F.–J. Sayas) Lab # 11 May 3

Open Matlab and move to the Desktop or to a folder where you can find your work at the
end of the session. Type these lines

>> diary myworkMay3

>> format long

>> format compact

Download heatForwardFD.m and scriptMay3.m from the website.

To review. We want to approximate the following initial and boundary value problem for the
heat equation: u(x, t) with a ≤ x ≤ b and 0 ≤ t ≤ T satisfies the partial differential equation

∂u

∂t
= D

∂2u

∂x2
, a < x < b, 0 < t ≤ T, (D > 0 is the diffusivity),

and initial condition at time t = 0

u(x, 0) = u0(x) a ≤ x ≤ b,

and two boundary conditions at x = a and x = b for all times

u(a, t) = l(t), u(b, t) = r(t) 0 < t ≤ T.

To discretize we choose integers N and M and define

h =
b− a

N + 1
xi = a + i h, i = 0, 1, . . . , N,N + 1,

and

k =
T

M
tn = nk, n = 0, . . . ,M.

The forward finite difference method approximates

Un
i ≈ u(xi, tn)

using the following time-stepping formula for n ≥ 0:

Un+1
i − Un+1

i

k
= D

Un
i−1 − 2Un

t + Un
i+1

h2
i = 1, . . . , N

The quantities corresponding to n = 0 are taken from the initial condition

U0
i = u0(xi) i = 0, . . . , N + 1,

whereas the equantities corresponding to boundary points i = 0 and i = N + 1 are taken from
the boundary conditions

Un
0 = l(tn) Un

N+1 = r(tn), n ≥ 1.

1



To understand. The time-stepping process can be organized in the following way. We take
a column vector un = (Un

1 , . . . , U
n
N )> collecting all the unknowns at time tn on interior points

(the boundary points are excluded). Then the method can be written as

un+1 = un − Aun + b(tn) n = 1, . . . ,M,

where

A =
kD

h2


2 −1 0 0 0
−1 2 −1 0 0

0
. . .

. . .
. . . 0

0 0 −1 2 −1
0 0 0 −1 2

 b(t) =
kD

h2


l(t)
0
...
0

r(t)

 .

In this way, the unknowns Un
0 and Un

N+1 are never defined explicitly (but they are used in the
boundary conditions at the time-stepping level). In the code, they are also imposed in order to
have a clear view of the entire solution.

To test. Go now to the code provided.

1. Have a look at the function heatForwardFD.m. Is there anything you don’t understand?
I’ll ask you for two easy modifications, so you’ll need to know what’s in it.

2. Open the script. It solves the equation with the following parameters: D = 1
2 , (a, b) =

(0, 1), T = 1, with initial condition

u0(x) = x2(1 − x)2.

What are the boundary conditions? Write the mathematical expression for both of them.

3. Run the script and check how the solution evolves with time. Can you see it getting to a
steady-state?

4. There’s a serious stability requirement:

kD

h2
<

1

2
, that is k <

h2

2D
.

If N = 20, what is the longest time-step that you can use ensuring stability of the method?

5. Check now the other values of M (number of time steps) in the script. Can you see the
effect on the numerical approximation?

To modify. The stability requirment means that when we want good spatial resolution (large
N , small h) and diffusivity D is large, the time steps k have to be very short, even if the solution
does not evolve in any dramatic way. To avoid that, we can change the method to a backward
(implicit method), computing for n ≥ 0:

Un+1
i − Un+1

i

k
= D

Un+1
i−1 − 2Un+1

t + Un+1
i+1

h2
i = 1, . . . , N

which, after some algebra and the substitution of the boundary conditions, can be written as

(I + A)un+1 = un + b(tn+1) n = 1, . . . ,M.

Your goal now is:
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1. Create a function heatBackwardFD.m that implements this new method. The modifications
from the forward method are minimal, so you can just go ahead and copy-paste everything
and just change what you need to change.

2. Use the same script with the new method and check ow there are no stability conditions,
that is, there are no restrictions on the time step depending on diffusivity and on the grid
size in the space variable.
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