MATH 353: Engineering Mathematics III - Section 012

Spring 2013 (F.-J. Sayas)
Lab \# 3
February 22

Open Matlab and move to the Desktop or to a folder where you can find your work at the end of the day. Set up the diary. Type these two lines

```
>> format long
>> format compact
```

Download the functions fixedpoint.m, newton.m and secant.m from my website.

1. Before we start trying things out, type these two lines exactly as they are.
```
>> list=1:0.5:5;
>> trend=list(2:end)./list(1:end-1);
```

What is in trend? You should be able to figure it out before you have a look at it.
2. Run the following lines now:

```
>> p = @(x) (x+5)./(x+1);
>> [fix,hist]=fixedpoint(p,1.5,10,1e-4)
>> exact=sqrt(5); % exact solution
>> err=abs(hist-exact)
>> err(2:end)./err(1:end-1)
```

Since we know that fixedpoint is using a fixed point iteration. What can we know about convergence of the iteration? What is the rate of convergence? What is $\left|p^{\prime}(r)\right|$?
3. When you are going to repeat the same kind of experiment several times, the following strategy is useful:

- Open a blank file to write on (Go to Edit and New or click on the blank page icon)
- Copy the following lines (comments are optional but highly recommended).

```
% This is not a function. This a script
% There's no input and no output.
p = @(x) 8./(x+2); % looking to solve r=p(r)
exact = 2; % exact fixed point
[fix,hist]=fixedpoint(p,0.1,40,1e-10); % fixed point iteration
err=abs(hist-exact) % errors
err(2:end)./err(1:end-1) % trend of the errors
% It's a good idea to add comments to remember what you did
```

- Save the file as scriptFebruary22
- Go to the main window and run this

```
>> scriptFebruary22
```

What did we just do? What was the rate of convergence?
The main difference between a script and a function is that functions have input and output, while scripts are like lines you run on the main window.
4. Newton's method and quadratic convergence. We want to compute zeros of

$$
f(x)=\cos \left(x^{2}\right)-\sin \left(x^{2}\right)
$$

using Newton's method. We then need

$$
f^{\prime}(x)=-2 x\left(\sin \left(x^{2}\right)+\cos \left(x^{2}\right)\right)
$$

In a new script:

- Define the functions f and fp containing f and f^{\prime}.
- Call Newton's method, starting at $x_{0}=0.4$, taking at most 5 iterations and tolerance 10^{-10}.
- We are trying to approximate the value $r=\sqrt{\pi / 4}$. Compute the values $e_{i}=\left|x_{i}-r\right|$.
- Compute the sequence

$$
\frac{e_{i+1}}{e_{i}}
$$

What does it converge to? (If you get this right, you'll have seen that this the sequence x_{i} converges faster than linearly.)

- Compute the sequence

$$
\frac{e_{i+1}}{e_{i}^{2}}
$$

How does this show that Newton's method converges quadratically?
5. Run the secant method code with starting values $x_{0}=0$ and $x_{1}=1$ and check that it gets to the right solution.
6. Open the file secant and make a modification so that it outputs the history of iterations as well. At the end you should get a function that works like this:

```
[r,hist]=secant(f,x0, x1,tol,itmax)
```

7. Once you have the modification for the secant code, use it to see how the error behaves in the previous example

$$
f(x)=\cos \left(x^{2}\right)-\sin \left(x^{2}\right), \quad r=\sqrt{\frac{\pi}{4}}, \quad x_{0}=0, \quad x_{1}=1, \quad \text { tol }=10^{-10}, \quad \text { itmax }=6
$$

In particular I want you to check that

$$
\frac{e_{i+1}}{e_{i}} \rightarrow 0 \quad \frac{e_{i+1}}{e_{i}^{2}} \rightarrow \infty
$$

(In the second case, you will not get to see the quotient grow all the way to ∞, but it'll grow.) Write all the instructions in a script.

Matlab has its own function to compute roots. It is called fzero (as in function-zero). It uses Brent's method, which is a mix of several methods. If you want your roots, let Matlab do the job.

