
MATH 353: Engineering Mathematics III – Section 012

Spring 2013 (F.–J. Sayas) Lab # 4 March 1

Open Matlab and move to the Desktop or to a folder where you can find your work at the
end of thesession. Type these two lines

>> diary myworkMarch1

>> format long

>> format compact

Download the functions evaluatelagrange.m from my website.

1. Here’s an easy one. Open the editor and copy the following lines in a script. Save it as
scriptMarch1.m

f = @(x) 1./(2+sin(x.ˆ2));
x=[0,1,2];
plot(x,f(x),'o') % plot interpolation points
hold on % keep the points for the next figure
xx=0:0.1:2; % many points in [0,2]
yy=evaluatelagrange(x,f(x),xx);
plot(xx,yy)

Now run the script. What did we do? What function are we interpolating? Where? What
is the degree of the polynomial that we are plotting?

2. Add a line to the previous code so that you see the graph of the function f on top of
everything. Make the plot in color red. (To do this, look for help plot or fplot. If you
cannot figure it out, ask.)

3. Repeat everything, interpolating in the points 0, 1, 2, and 3/2.

4. An infamous example. We want to interpolate the function

f(x) =
1

1 + 12x2

on several equally spaced points in the interval [−1, 1]. Exactly in these points

x1 = −1, x2 = −1 +
2

n
, x3 = −1 +

4

n
, . . . xn = −1 +

2n− 2

n
, xn = 1 = −1 +

2n

n
.

This can also be seen as

xi = a+
b− a

n
(i− 1) i = 1, . . . , n+ 1, with a = −1, b = 1.

• We are going to try this with several different choices of n, so n should be defined to
have a value right at the beginning of the script and we will change that later.

1



• Other than that, follow the same structure as the script we already had, but plot
everything in the interval [−1, 1]. You will need quite some points to plot (this is xx
in the code).

• Once you are done, run the code for

n = 5, n = 10, n = 15, n = 20.

At each precise value of n, what is thedegree of the interpolating polynomial? Can
you see the train wreck?

5. The Chebyshev points. What happened in the previous example is a phenomenon that
is very well understood and can be phrased as: interpolating a function in an increasing
number of equidistant points may lead to a diverging approximation. One way to avoid
this is to use the following collection of points. In order to approximate in the interval
[a, b] we use the points

xi =
a+ b

2
+
b− a

2
cos

(
(2i− 1)π

2n+ 2

)
i = 1, . . . , n+ 1.

Repeat the previous example, substituting the atuomatic generation of the equispaced
opoints by this new choice of points. Run again the code for increasing values of n.

6. The Lagrange polynomials. Given points x1, . . . , xn+1 (which we are going to sup-
pose to be given in increasing order, although this is not important), we can define the
polynomials

Lk(x) =
x− x1
xk − x1

. . .
x− xk−1

xk − xk−1

x− xk+1

xk − xk+1
. . .

x− xn+1

xk − xn+1
k = 1, . . . , n+ 1.

The computation of these polynomials is at the heart (in the inner loop) of the function
evaluatelagrange. Create a script that: uses the points

x1 = 1, x2 = 3, x3 = 4, x4 = 6, x5 = 7

and plots the polynomials L1(x), . . . , L5(x) (what is the degree of these polynomials, by
the way?) in the interval [1, 7]. Hint. A particular choice of values of y will give you
each of the polynomials, and there’s basically nothing to program. You just need to run
evaluatelagrange five times.

2


