
MATH 353: Engineering Mathematics III – Section 012

Spring 2013 (F.–J. Sayas) Lab # 5 March 8

Open Matlab and move to the Desktop or to a folder where you can find your work at the
end of the session. Type these lines

>> diary myworkMarch8

>> format long

>> format compact

Download the functions divideddiff.m and nested.m from my website.

1. What do the following lines do?

>> linspace(1,3,7)

>> linspace(0,4,10);

2. Type up the matrix

A =


1 2 3
−1 −4 0
2 3 1
2 1 1

 .

(Remember: we write by rows, with blanks between elements and using semicolons to
change rows.) How would you select the complete 3rd row? And the complete 3rd column?

3. If we define the following functions

>> f = @(x) x.^2-2*x;

>> g = @(x) f(x.^2);

What function is g exactly? (Write down the mathematical expression.)

Interpolation using Newton’s formula

4. Consider the points

(0, 1), (1, 3), (2, 4), (3, 6), (4,−2), (5, 0).

Write a script that does all of the following steps:

• Compute the divided differences with divideddiff.

• Create a large list of points xx in the interval [0, 5] and evaluate the interpolation
polynomial at xx using nested.

• Plot the points where we interpolate with circular markers. Plot the interpolation
polynomial on top of the points.
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Cubic splines

Read this! Ask if you don’t understand.

We are given a collection of points:

(x1, y1), (x2, y2), (x3, y3), . . . , (xn+1, yn+1)

with the xi points given in increasing order (this is a requirement here!)

x1 < x2 < x3 < . . . < xn < xn+1.

A cubic spline function with knots or breakpoints at the points x1, . . . , xn+1 is a function
S : [x1, xn+1]→ R such that

(a) It is a cubic polynomial on each interval (xi, xi+1)

(b) It is continuous, with continuous derivative and continuous second derivative.

In principle, with the first rule, a cubic spline is determined by 4 parameters (the coefficients
of the polynomial) on each subinterval. There are n subintervals and therefore there are 4n
parameters to determine. If we now look at the rule (b), we have to impose the conditions

S(x−i ) = S(x+i ), S′(x−i ) = S′(x+i ), S′′(x−i ) = S′′(x+i ) i = 2, . . . , n.

(Why?) This means that we have 4n− 3(n− 1) = n+ 3 parameters to determine. We want this
spline to interpolate our points, that is, we want

S(xi) = yi i = 1, . . . , n + 1,

which are n + 1 additional conditions on the coefficients. This leaves us with

4n− 3(n− 1)− (n + 1) = 2 free parameters.

The world of splines is actually quite interesting and there are many options to fix these two
missing parameters. One of them is called the not-a-knot option, which imposes two more
conditions

S′′′(x−2 ) = S′′′(x+2 ), S′′′(x−n ) = S′′′(x+n ).

Now here’s a tricky observation. These last conditions (added to the previous continuity condi-
tions in x2 and in xn) imply that in (x1, x2) and (x2, x3), S is the same polynomial (that is, its
coefficients are the same). Likewise, in (xn−1, xn) and (xn, xn+1), S is also the same polynomial.
Can you figure out why? In any case, this implies that the points x2 and xn are not really knots
of the not-a-knot spline, given the fact that S does not break across these points.

Interpolating with cubic splines requires writing down a system of linear equations to com-
pute the coefficients of the polynomials on each of the subintervals. Once we have the
coefficients, to evaluate the spline, we have to determine in what subinterval we are and
then we evaluate the corresponding polynomial. This time we are going to let Matlab do
the hard work.
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5. Run the following lines of code:

>> x=[0 1 2 3 4 5];

>> f = @(x) x.^4-cos(pi/3*x);

>> S=spline(x,f(x)) % S is a data structure with many things in it

S =

form: ’pp’

breaks: [0 1 2 3 4 5]

coefs: [5x4 double]

pieces: 5

order: 4

dim: 1

>> format short

>> A = S.coefs % S.coefs are the coefficients of the spline

A =

5.0222 -7.8167 4.2944 -1.0000

5.0222 7.2500 3.7278 0.5000

9.8889 22.3167 33.2944 16.5000

14.9222 51.9833 107.5944 82.0000

14.9222 96.7500 256.3278 256.5000

The way Matlab gives the coefficients is the following. To represent the cubic polynomial
in the interval (xi, xi+1) the coefficients are given in reverse order in the i-th row of the
matrix A and thinking of the representation:

S(x) = ai,1(x− xi)
3 + ai,2(x− xi)

2 + ai,3(x− xi) + ai,4 in (xi, xi+1)

With this format, it is not obvious why the first and second rows are coefficients cor-
responding to the same polynomial. Also the last and last but one rows correspond to
exactly the same polynomial that is written in a different way.

6. Instead of using the coefficients to evaluate the spline, we can do everything at the same
time. If x, y are the interpolation points and xx is a large list of numbers between the
first and last of the interpolation points, then spline(x,y,xx) evalutes the spline at all
the points. Write a short script doing the following:

• Define the same x and f as in Exercise 5.

• Plot the interpolation points x, f(x) with circular markers.

• On top of those points, plot the interpolation spline.
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