MATH 353: Engineering Mathematics III - Section 012

Spring 2013 (F.-J. Sayas)
Lab \# 7
April 5

Open Matlab and move to the Desktop or to a folder where you can find your work at the end of the session. Type these lines

```
>> diary myworkApril5
>> format long
>> format compact
```

Download the function heun.m and the script scriptApril5.m from my website.

1. The function heun.m corresponds to the implementation of Heun's method (the explicit trapezoidal method) to numerically solve

$$
y^{\prime}=f(t, y) \quad a \leq t \leq b, \quad y(a)=y_{a}
$$

The script scriptApril7.m shows you one example of how this works. We are trying to solve the differential equation

$$
\left(t^{2}+1\right) y^{\prime}+3 t y=6 t, \quad y(0)=1
$$

First of all, we need to write it in explicit form

$$
y^{\prime}=\frac{6 t-3 t y}{t^{2}+1}, \quad y(0)=1 .
$$

The exact solution of this problem is

$$
y(t)=2-\frac{1}{\left(t^{2}+1\right)^{3 / 2}}
$$

- Run the script and figure out what we did. What is the interval where we solved the equation? How many time steps? Some place in the script, we have computed

$$
E_{h}=\max _{0 \leq j \leq n}\left|w_{j}-y\left(t_{j}\right)\right| .
$$

What is this value?

- Run the code again with $n=20$ time steps in the same time interval.
- Run the code again with $n=100$ time steps in the interval $[0,10]$.

2. Let us now compute errors for increasing values of n. Run the same example in the interval [0,10], with $n=10,20,40,80,160,320$, compute the errors, make a loglog plot of the errors and compare them with a loglog plot of $\left(h, h^{2}\right)$. To help you get organized...

- Create a list listn=[10 20 ...]
- Compute the vector with all values of h (you'll need it for the plots)
- Run heun when n takes values in the list listn
- Compute the error and accumulate it on a vector of errors.
- Do the loglog plots.

3. As we saw in class, there's an easy modification of this code that gives you the code for Euler's method. In this case the error is $E_{h}=\mathcal{O}(h)$, as opposed to $E_{h}=\mathcal{O}\left(h^{2}\right)$ in Heun's method.

- Create the function euler.m following the same model as heun.m (copy-paste at will).
- Repeat the experiment of Exercise 2 and show that you have order one and not two.

4. We are now going to experiment with a more complicated equation. For this one, we do not know the solution:

$$
y^{\prime}=y \cos t, \quad 0 \leq t \leq 8 \pi \quad y(0)=1 .
$$

Solve this for $n=25,50,100,200,400$ using Heun's method. At the point of getting the result I'm asking you to do the following:

- Compute the solution for $n=25$ and plot it. Pause (the command pause witll wait for you to click on enter) and hold on.
- Compute the solution for $n=50$ and plot it.
- Go on until you have all experiments on the same graph.

5. Repeat Exercise 4 with Euler's method.
