MATH 353: Engineering Mathematics III - Section 012

Spring 2013 (F.--J. Sayas)
Lab \# 9
April 19

Open Matlab and move to the Desktop or to a folder where you can find your work at the end of the session. Type these lines

```
>> diary myworkApril19
>> format long
>> format compact
```

1. Matrix review:
(a) Introduce the following matrix in Matlab.

$$
A=\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right]
$$

(b) Select its third row
(c) Select its fourth column.
2. If you want to solve a linear system

$$
\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
3 \\
2 \\
4
\end{array}\right]
$$

you get A as before, copy the right hand side as a column vector

```
>> b=[-1;2;3;2;4]
>> b=[llllll}-112~llll, % both options give the same result
```

and then we just go ahead and let Matlab solve with the backslash command.

```
>> A\b
ans =
    3.333333333333334
    7.666666666666670
    10.000000000000002
    9.333333333333332
    6.666666666666665
```

3. Let us repeat the previous exercise with a $N \times N$ system

$$
\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & \ddots & \ddots & \ddots \\
0 & 0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{N}
\end{array}\right]=\frac{1}{(N+1)^{2}}\left[\begin{array}{c}
f\left(t_{1}\right) \\
f\left(t_{2}\right) \\
f\left(t_{3}\right) \\
\vdots \\
f\left(t_{N}\right)
\end{array}\right]
$$

where

$$
f(t)=t^{2}-2 t+1, \quad t_{i}=\frac{i}{N+1} \quad i=(0), 1, \ldots, N,(N+1) .
$$

Write a script that does all the following:
(a) Create the matrix. (Learn how to use the function diag in Matlab to do that.)
(b) Define the right-hand side.
(c) Solve the system.
(d) If x is the solution, create the vector $\mathrm{x}=[0 ; \mathrm{x} ; 0]$ and plot it in the y axis with t_{i} (for $i=0, \ldots, N+1$ in the x axis.

