MATH 353: Engineering Mathematics III - Section 012

Every time you finish an exercise, write down the result and check with me.

1. We are given five points:

$$
(0,1), \quad\left(1, \frac{3}{2}\right), \quad(2,0), \quad\left(\frac{5}{2},-1\right), \quad(3,3) .
$$

(a) Evaluate the interpolation polynomial at the point $x_{0}=0.4$.
(b) Compute the Newton divided differences (use divideddiff for this)
(c) Write down the formula for the interpolation polynomial in Newton's form.
2. Make a plot of the same five points given above. Use circular markers. On top of them, plot the spline that interpolates them. (The result of this exercise is: the list of instructions you used and a check mark written by me on this space.)

What is the value of the interpolation spline at the points 0.4 and $0.7 ?$
3. Following what we have done today. You have a sequence of errors E_{h} depending on a parameter h. They are shown in the following table (h on the left column, E_{h} on the right):

```
>> [h' err']
ans =
    0.500000000000000 0.250000000000000
    0.250000000000000 0.062500000000000
    0.125000000000000 0.015625000000000
    0.062500000000000 0.003906250000000
    0.031250000000000 0.000976562500000
    0.015625000000000 0.000244140625000
    0.007812500000000 0.000061035156250
    0.003906250000000 0.000015258789063
    0.001953125000000 0.000003814697266
    0.000976562500000 0.000000953674316
```

We claim that $E_{h} \approx C h^{p}$ for some p to be determined.
(a) Justify the formula

$$
\log \left(\frac{E_{h_{1}}}{E_{h_{2}}}\right) \approx p \log \left(\frac{h_{1}}{h_{2}}\right)
$$

(b) Use it to figure out what p is.
(c) Make a loglog plot of $\left(h, E_{h}\right)$. (You need to get a check from me here.) What is the slope of the line you obtain?

