
NAME:

MATH 353: Engineering Mathematics III

Spring’13 Midterm exam #1 (solutions) March 6

1. (10 points) We run the following lines of code

>> a=2:0.2:6;

>> b=a([3 5 6]);

What is in b?

The array a is

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 ... 6

We take the third, fifth and sixth components to build b, that is

b = [ 2.4 2.8 3 ]

2. (10 points) Explain the following two lines of Matlab

>> 1e320

ans =

Inf

>> Inf/Inf

ans =

NaN

Use them to explain why the following two lines give different results. What are
they?

>> a=(1e120*3e200)/(2e100*1e210)

>> b=(1e120/2e100)*(3e200/1e210)

The number 10320 exceeds the maximum exponent that is allowed in double precision arith-
metic. Therefore it is stored by Matlab as ∞. The division ∞/∞ is an indeterminate and
Matlab returns not a number.

The first computation gives Inf/Inf and therefore the result is NaN. The second computation

has better balanced parentheses, avoiding multiplication of very large numbers. The result is

0.5× 1020/(3× 1010) = 1.5× 1010.

1



3. (10 points) We run the following lines of code

>> f = @(x) x.^2./(1+x.^3);

>> f([1 3])

What is the result?

We have written a function that allows us to evaluate

f(x) =
x2

1 + x3

simultaneously in many points (it is vectorized). We then evaluate it in 1 and 3. The result

is the vector with components (12 ,
9
28).

4. (10 points) Consider the following lines that we have taken from a Matlab script

x=1;

for it=1:2e3

x=0.5*(x+3/x);

end

Write with mathematical formulas what we just did (not the result!). How many
iterations have we performed?

This is the iteration

x1 = 1, xi+1 =
1

2

(
xi +

3

xi

)
i = 1, . . . , 2000.

5. (10 points) Write the mathematical expression of the following line of code (assume
that n stores a positive integer)

>> x=a+(b-a)/n*(0:n);

How many entries does the vector x have?

We have built a vector with components

a+
b− a

n
i i = 0, 1, . . . , n.

We have n = 1 components in the array.

6. (10 points) We run the following lines of code.

2



>> err =[1.354248688935409,...

0.229248688935409,...

0.009139993283235,...

0.000015733125699,...

0.000000000046779];

>> trend=err(2:end)./err(1:end-1).^2

trend =

0.1250 0.1739 0.1883 0.1890

In err we have stored some errors |xi − r| for an iteration trying to compute a
quantity r. What can you say about convergence of that iteration? If err(i) stores

ei = |xi − r|, the line where we compute the array trend corresponds to the mathematical
expression

ei+1

e2i
.

This quantity seems to converge to a number (its value is not important), which shows

quadratic convergence of the corresponding iteration.

7. (15 points) An iteration

x0 given, xi+1 = g(xi), i = 1, 2, 3, 4

has been applied to compute a fixed point r = g(r). We have also computed the
errors

ei = |xi − r|, i = 0, . . . , 4.

These are the quantities we obtained

err1 =[0.020746217944410,...

0.006076689632185,...

0.001779827797216,...

0.000521299658575,...

0.000152685139140];

Show that the iteration is converging linearly. (You’ll need to compute four divisions
for this.) Assuming that g is differentiable, what can we say about |g′(r)|?

If we compute the quotients of consecutive errors as follows

0.006076689632185

0.020746217944410
≈ 0.292906

0.001779827797216

0.006076689632185
≈ 0.292894

0.000521299658575

0.001779827797216
≈ 0.292893

0.000152685139140

0.000521299658575
≈ 0.292893

we can see that the iteration is converging linearly at a rate ≈ 0.29289. If this is a fixed point

iteration for the function g and r is the fixed point, then |g′(r)| ≈ 0.29289.

3



8. (15 points) Compute two iterations of the secant method applied to the function

f(x) = x2 − 5

starting at x0 = 0 and x1 = 1. Write the result of the final computation in floating
point form 0.m1....10n, with five significant digits.

The formula for an iteration of the secant method is

xi+1 = xi − f(xi)
xi − xi−1

f(xi)− f(xi−1)
.

The first iteration gives x2 = 5. The second one, computed with x1 and x2, gives x3 =
10
6 ≈

0.16667× 101.

9. (20 points) Here’s a piece of code that is almost finished

function [r,hist]=unknown(f,fp,x0,tol,itmax)

% [r,hist]=unknown(f,fp,x0,tol,itmax)

% Input:

% Explanations

% Output:

% Explanations

r = x0; hist = r;

for i=1:itmax

d=f(r)/fp(r);

r=r-d;

hist=[hist r];

if abs(d) < tol

return

end

end

display(’Message’) % Line to be completed

return

Three questions on this piece of code:

(a) What method does this function correspond to? What is it that we are trying
to solve?

(b) What (exactly) would happen if we type help unknown?

(c) The Message’ line is to be completed. What is the message you should write
instead on the word Message. It has to make sense in the context that we are
trying to use this.

4



(a) It is Newton’s method to compute roots of functions. (b) We would get all the commented
lines right after the header of the function

% [r,hist]=unknown(f,fp,x0,tol,itmax)

% Input:

% Explanations

% Output:

% Explanations

(c) If we have reached this line, then we have iterated all the way to the maximum number
of iterations but the stopping criterion has never been satisfied. The program has to wanr the
user that this is so:

Maximum number of iterations reached without convergence

10. (20 points) We want to interpolate in the following points

(1, 1
2
), (2,−1

4
), (5, 1)

with a polynomial of degree at most 2.

(a) Write down (in all detail, but without simplifying) the Lagrange formula to
interpolate the points.

Here’s our code to evaluate the interpolating polynomial in a collection of points.

function Y=evaluatelagrange(x,y,X)

% Y=evaluatelagrange(x,y,X)

%

% Input:

% x : vector with n+1 entries (points x_i)

% y : vector with n=1 entires (points y_i)

% X : any vector where we want to evaluate the interpolant

% Output:

% Y : values of the interpolant P at the points X

Y=0;

n=length(x)-1;

for k=1:n+1

c=y(k);

for j=[1:k-1 , k+1:n+1] % list of 1 to n=1 w/o k

c=c.*(X-x(j))./(x(k)-x(j));

end

Y=Y+c;

end

return

5



(b) Using evaluatelagrange, write down what would have to do to evaluate in the
points {1, 1.1, 1.2, 1.3, ..., 2} the polynomial that interpolates (1, 1

2
), (2,−1

4
), (5, 1).

For (a), the solution is:

p(x) = 1
2

(x− 2)(x− 5)

(1− 2)(1− 5)
+ (−1

4)
(x− 1)(x− 5)

(2− 1)(2− 5)
+ 1

(x− 1)(x− 2)

(5− 1)(5− 2)

For (b) we just need to use the program in the following way

evaluatelagrange([1 2 5],[1/2 -1/4 1],1:0.1:2)

11. (20 points) Compute the Newton divided differences and write down the Newton
formula for the interpolating polynomial for the following points

(1, 2), (3, 5), (2,−1).

(The points have to be used in the given order.)

This is the table of divided differences:

1 2
↘

5−2
3−1 = 3

2

↗ ↘
3 5

6− 3
2

2−1 = 9
2

↘ ↗
−1−5
2−3 = 6

↗
2 −1

This is the interpolation polynomial given in Newton’s form

p(x) = 2 + 3
2(x− 1) + 9

2(x− 1)(x− 3).

6


