
NAME:

MATH 353: Engineering Mathematics III

Spring’13 Midterm exam #2 (solutions) April 17

1. (20 points) Write the output of the following command lines in Matlab:

linspace(0,1,5)

Five equally spaced points from 0 to 1, including both limits

0 0.25 0.5 0.75 1

10*2.^(0:4)

We are computing 10× 2i for i = 0, . . . , 4,

10 20 40 80 160

a=1; b=3;

n=10.^(1:4);

h=(b-a)./n;

We first compute the powers n = 10i for i = 1, . . . , 4, and then (b − a)/n. The fact that
there’s a semicolon does not affect the fact that these quantities are computed. The results
are not shown on screen though.

n = [10 1000 1000 10000]

h = [0.2 0.02 0.002 0.0002]

f = @(t) t.^2+1;

sum(f(0:0.5:2));

We evaluate the function f in the points [0 0.5 1 1.5 2] and then add the result:

12.5

1

doessomething =@(f,x0,h) (f(x0+h)-f(x0-h))./(2*h);

g= @(t) t.^3+3;

doessomething(g,1,[0.1 0.01])

g(1.1)− g(0.9)
0.2

= 3.01,
g(1.01)− g(0.99)

0.02
= 3.0001

2. (10 points) Show that

f(x0 + h)− f(x0 − h)

2h
= f ′(x0) +O(h2).

Using Taylor expansions

f(x0 + h) = f(x0) + hf ′(x0) +
1
2h

2f ′′(x0) +
1
6h

3f ′′′(c),

f(x0 − h) = f(x0)− hf ′(x0) + 1
2h

2f ′′(x0)z − 1
6h

3f ′′′(d)

(c is an unknown point between x0 and x0 + h, and d is an unknown point between x0 − h
and x0), we can write

f(x0 + h)− f(x0 − h) = 2hf ′(x0) +
1
6h

2(f ′′′(c) + f ′′′(d)),

that is ∣∣∣∣f(x0 + h)− f(x0 − h)
2h

− f ′(x0)
∣∣∣∣ = 1

6h
2|f ′′′(c) + f ′′′(d)| ≤ 1

6h
2max |f ′′′(x)|.

3. (20 points) Apply the midpoint, trapezoid and Simpson rules (the simple ones) to
approximate the following integralˆ 1

0

(x3 − 2x2)dx.

Is any of the three approximations the exact value of the integral? Why? (Hint.
You don’t need to compute the exact value of the integral to answer this question.)

Note that we need to evaluate the polynomial function p(x) = x3 − 2x2 on three points:

p(0) = 0, p(12) = (12)
3 − 2(12)

2 = −3
8 , p(1) = −1.

We then get three possible approximations:

(Midpoint) :

ˆ 1

0
(x3 − 2x2)dx ≈ 1 p(12) = −

3
8

(Trapezoid) :

ˆ 1

0
(x3 − 2x2)dx ≈ 1

2

(
p(0 + p(1)

)
= −1

2

(Simpson) :

ˆ 1

0
(x3 − 2x2)dx ≈ 1

6

(
p(0) + 4p(12) + p(1)

)
= − 5

12 .

Simpson’s rule gives the exact value since p(x) is a ppolynomial of degree three and Simpson’s

rule has degree of precision three.

2

4. (10 points) Check the degree of precision of the numerical integration formula

ˆ 1

0

f(x)dx = 1
4
f(0) + 3

4
f(2

3
).

We need to check how far we can go with f(x) = 1, x, x2, until the numerical integration
formula differs from the exac value:

ˆ 1

0
1dx = 1 = 1

4 1 +
3
4 1,ˆ 1

0
xdx = 1

2 = 1
2 0 +

3
4

2
3 ,ˆ 1

0
x2dx = 1

3 = 1
4 0

2 + 3
4 (

2
3)

2,

ˆ 1

0
x3dx = 1

4 6=
1
4 0

3 + 3
4(

2
3)

3

The degree of precision is therefore two.

5. (20 points) Here’s the code of the composite Simpson rule.

function integral=simpsonrule(f,interval,m)

% Shf=simpsonrule(f,[a b],m)

%

% Input:

% f : vectorized function of one variable

% [a b] : vector with limits of integration interval

% m : number of subdivisions

% Output

% Shf : approx of \int_a^b f(x) dx with composite Simpson rule

x=linspace(interval(1),interval(2),m+1);

h=(interval(2)-interval(1))/m;

mdpt=0.5*(x(2:end)+x(1:end-1));

integral=(h/6)*(f(x(1))+2*sum(f(x(2:end-1)))+f(x(end))+4*sum(f(mdpt)));

return

(a) Modify it to be the composite midpoint rule.

Substitute only one line:

integral=h*sum(f(mdpt))

(b) Modify it to be the composite trapezoid rule. Substitute only one line:

3

integral=(h/2)*(f(x(1))+2*sum(f(x(2:end-1)))+f(x(end)));

The line where we compute mdpt can be eliminated.

6. (10 points) Consider the differential equation

(y + 1) y′ + 3t y = 0, t ≥ 0, y(0) = 1.

Compute two steps of Heun’s method (the explicit trapezoidal method) using time
step h = 0.1. Give all the results with five significant digits.

We write the equation in standard form

y′ = − 3ty

y + 1
= f(t, y) y(0) = 1.

The w0 = 1. To compute w1, we compute the internal stages

k1 = f(t0, w0) = f(0, 1) = 0,

k2 = f(t0 + h,w0 + h k1) = f(0.1, 1) = −0.15,

and then do the time-stepping process

w1 = w0 +
h
2 (k1 + k2) = 0.9925.

We repeat the process starting at (t1, w1) = (0.1, 0.9925)

k1 = f(t1, w1) = f(0.1, 0.9925) ≈ −0.14944,
k2 = f(t1 + h,w1 + h k1) ≈ f(0.2, 0.9925 + 0.1× (−0.14944))
≈ f(0.2, 0.97756) ≈ −0.29660,

and do the time-step
w2 = w1 + 0.05× (k1 + k2) ≈ 0.97020

7. (20 points) Here is the code of Heun’s method.

function [w,t]=heun(f,tinit,tfinal,yinit,n)

% [w,t]=heun(f,tinit,tfinal,yinit,n)

% Input:

% f : function of two variables

% tinit : initial time

% tfinal : final time

% yinit : initial value (at t=tinit)

% n : number of time-steps

% Output:

% w : vector with n+1 components w_i \approx y(t_i)

% (Heun’s method for y’=f(t,y), y(tinit)=yinit

4

% t : vector with n+1 components (times)

t=linspace(tinit,tfinal,n+1);

h=(tfinal-tinit)/n;

w=zeros(1,n+1); % room to store the solution

w(1)=yinit; % initial value

for i=1:n

k1=f(t(i),w(i));

k2=f(t(i)+h,w(i)+h*k1);

w(i+1)=w(i)+h*0.5*k1+h*0.5*k2;

end

return

(a) Modify it for the midpoint method.

We only need to modify two lines:

k2=f(t(i)+h/2, w(i)+h*k1/2);

w(i+1)=w(i)+h*k2;

(b) Modify it for Euler’s method.

We only need to modify one line:

w(i+1)=w(i)+h*k1;

The line where we define k2 can be eliminated.

8. (10 points) We have run three different methods for a differential equation in the
interval 0 ≤ t ≤ 1. We have computed the maximum error as a function of h = 1/n,
where n is the number of time steps. We run experiments with n = 1, 2, 4, 8, 16.
Each of the three columns contains all the experiments for a method and we are
expecting

Eh = max
0≤i≤n

|wi − y(ti)| = O(hp)

(y(t) is the exact solution, ti = 0+ i h, and wi ≈ y(ti) is the approximated solution).
What is p for each column/method?

0.569560557758917 0.000579323417547 0.140859085770477

0.267769111808837 0.000037013462701 0.035649264005780

0.129466548687958 0.000002326240851 0.008940076098471

0.063618163463359 0.000000145592846 0.002236763705256

0.031529636406385 0.000000009102726 0.000559300120949

In each column we divide one number but the number below. This is the table that we get...

5

2.1271 15.6517 3.9512

2.0682 15.9113 3.9876

2.0351 15.9777 3.9969

2.0177 15.9944 3.9992

The process h 7→ h
2 transforms errors Eh ≈ C hp 7→ Eh/2 ≈ C hp2−p, so Eh/Eh/2 ≈ 2p. This

means that the first column is order one (p = 1), the second column is order four (p = 4) and

the third column order two (p = 2). Only a few of these divisions have to be computed to see

the decreasing pattern of the error on each column.

9. (20 points) You are next given the code for the Runge-Kutta method of order four,
but the help lines have been deleted, so you need to read the code to figure out what
kind of input and output this code needs.

function [w,t]=rk4(f,tinit,tfinal,yinit,n)

% Help lines deleted

t=linspace(tinit,tfinal,n+1);

h=(tfinal-tinit)/n;

w=zeros(n+1,length(yinit)); % create room to store the solution

w(1,:)=yinit; % initial value

for i=1:n

k1=f(t(i),w(i,:));

k2=f(t(i)+h/2,w(i,:)+h/2*k1);

k3=f(t(i)+h/2,w(i,:)+h/2*k2);

k4=f(t(i)+h,w(i,:)+h*k3);

w(i+1,:)=w(i,:)+(h/6)*(k1+2*k2+2*k3+k4);

end

return

We want to solve the system of ODE:

y′1 = y1 y2 + t2, 2 ≤ t ≤ 5,

y′2 = y21 + sin t, 2 ≤ t ≤ 5,

y1(2) = 3.1,

y2(2) = −1.

(a) Write down (in Matlab) what would be the input (all necessary data) if we
want to use the code rk4 with time steps of length h = 0.1.

f = @(t,y) [y(1)*y(2)+t^2, y(1)^2+sin(t)];

n=30; % tfinal-tinit=3, h=0.1 implies n=30 steps

rk4(f,2,5,[3.1 -1],30)

6

(b) What kind of output do we have?

t is a (row) vector with 31 components. w is a 31 × 2 matrix: its rows contain ap-

proximations in the different times (including t0) and its columns contain the different

components of the solution.

(c) If we want to find a approximation of y1(t3), where should we look for it?

Since it is the third time-step it’s stored in the fourth row. Since it’s y1, it’s stored in

the first column. Therefore, we have to look for in in w(4,1).

10. (10 points) Write the second order differential equation with initial conditions

θ′′ +
7

2
θ + 2θ′ = sin t, θ(0) = 1, θ′(0) = −1,

as an initial value problem for a system of first order equations.

We use the variables
y1 = θ, y2 = θ′,

so that
y′1 = y2, y′2 = −7

2y1 − 2y2 + sin t

and the initial values are
y1(0) = 1, y2(0) = −1.

7

