
MATH 353
Engineering mathematics III

Instructor: Francisco-Javier ‘Pancho’ Sayas

Spring 2014 – University of Delaware

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 1 / 15

NOTIONS ABOUT LINEAR SYSTEMS

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 2 / 15

Linear systems

Problem
A great deal of computational time is spent solving linear
systems

Ax = b,

where A is a square invertible matrix. For what we are going
to do, we only need to consider real matrices and right–hand
sides.

The matrix A is invertible if and only if det A 6= 0.
Do never compute the determinant to see if the matrix is
invertible! There are better ways. Many methods find out if
the matrix is not invertible (we say singular) as they
proceed. Invertible = non–singular.
We often write x = A−1b to denote the solution of Ax = b.
Please, do never, never, never invert a matrix to solve a
linear system. It is a huge waste of computational effort.

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 3 / 15

Again...

If you ever see the expression

x = A−1b

in the middle of an algorithm or an explanation, it means

solve Ax = b

and not find A−1 and then multiply by b.

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 4 / 15

What can MATLAB do for me?

The magic of backslash \
The expression

A \ b

can be used to solve the system Ax = b. MATLAB does
actually look at your matrix and tries to use the best available
method for it.

There will be situations when you will have to choose your
own method.
You might start by knowing more about your matrix
Careful with almost singular matrices (matrices that should
be singular but are not because of round–off error) and
with cases where there’s more than one solution. MATLAB
tries to give an answer always, sometimes with a warning.

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 5 / 15

SIMPLE SYSTEMS

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 6 / 15

The no–brainers

1 Diagonal systems (almost nothing to do!)
2 Permutation matrices (almost nothing to do!)
3 Lower triangular systems (substitution)
4 Upper triangular systems (back–substitution)
5 Orthogonal systems

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 7 / 15

Diagonal systems

Aim: Solve Dx = b where D is diagonal

D =

 d11
. . .

dNN


If your diagonal matrix D is fully stored (with all its zeros), you
only need to do

xi = bi/dii .

If your diagonal matrix is stored as a vector (you only store the
diagonal elements), it is even simpler.

x= b./d % d = vector with diagonal elements of D

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 8 / 15

Permutation matrices

A permutation matrix P is the matrix obtained by reordering the
rows of the identity matrix. Left–multiplication by a permutation
matrix produces the same effect on the vector.
Example: consider the permutation (2,4,1,3) of the numbers
from 1 to 4. We apply this permutation to the rows of the
identity matrix:

P =


0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0




x1

x2

x3

x4

 =


x2

x4

x1

x3




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0




1
2
3
4

 =


2
4
1
3



Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 9 / 15

Permutation matrices (2)

Permutation matrices satisfy the following property P−1 = P>.

However, solving systems with permutation matrices is even
cheaper than multiplying by the transpose. You need the vector
σ(i) that gives you the permutation. The permutation matrix
can be written as

pi,σ(i) = 1, and pi,j = 0 if j 6= σ(i).

Solving Px = b can be done in a simple loop

xσ(i) = bi , i = 1, . . . ,N

If the permutation is encoded in the vector perm, then we have
yet another MATLAB one–liner: x(perm)=b.

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 10 / 15

Lower triangular systems (the idea)

Aim: solve a system Lx = b, where L is lower triangular and
invertible (all its diagonal elements are non–zero)

L =


L11
L21 L22

...
. . .

LN1 LNN


Lower triangular systems can be solved by forward substitution
(solve one equation at a time, starting in the first one):

x1 = b1/L11, xi =
(

bi −
i−1∑
j=1

Lijxj

)
/Lii , i = 2, . . . ,N.

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 11 / 15

Lower triangular systems (the code)

We write

xi =
(

bi −
i−1∑
j=1

Lijxj

)
/Lii , i = 1, . . . ,N,

understading that
∑0

j=1 is an empty loop or expression. Note
how

i−1∑
j=1

Lijxj =
[

Li1 . . . Li,i−1
]  x1

...
xi−1


n=length(b);
x=zeros(n,1); % prepare room for the solution

% (column vector, like b)
for i=1:n

x(i)=(b(i) - L(i,1:i-1)*x(1:i-1))/L(i,i);
end

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 12 / 15

Upper triangular systems

Systems Ux = b with U upper triangular invertible

U =


U11 U12 . . . U1N

U22
...

. . .
...

UNN


can be solved by back substitution

xi =
(

bi −
N∑

j=i+1

Uijxj

)
/Uii , i = N,N − 1, . . . ,1.

(The summation sign
∑N

j=N+1 has to be understood as empty.)

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 13 / 15

Upper triangular systems (the code)

xi =
(

bi −
N∑

j=i+1

Uijxj

)
/Uii , i = N,N − 1, . . . ,1.

n=length(b);
x=zeros(n,1); % prepare room for the solution

% (column vector, like b)
for i=n:-1:1

x(i)=(b(i) - U(i,i+1:n)*x(i+1:n))/U(i,i);
end

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 14 / 15

Systems with orthogonal matrices

In some cases, we will want to solve

Qx = b

where Q is an orthogonal matrix (that is, a matrix such that
Q>Q = I, where I is the identity matrix). In this case, we solve
the system by premultiplying with the transpose of the matrix

Q>Qx = Q>b =⇒ x = Q>b.

Instructor: Francisco-Javier ‘Pancho’ Sayas MATH 353 15 / 15

