MATH 600: Fundamentals of Real Analysis

Final exam
December 12

READ CAREFULLY THESE INSTRUCTIONS

- Your answers have to be written in a fully coherent and readable way. You can work on scrap paper, but only what is written in this document will be graded.
- Correct answers written in a careless and mathematically non-rigorous way will get practically no credit.
- Jusfity your answers explaining what arguments and results you are using to get to your conclusions.
- Part of the grade of this exam evaluates your ability to write fully justified and readable proofs.
- Do not write anything in the exam (except in this cover page) that reveals your identity.
- You are not allowed to ask questions during the exam.

Sign and print your name and date here to show that you have read and understood these instructions.

Write here a three digit number
\square

Write the same number

1	20 pts	
2	20 pts	
3	20 pts	
4	20 pts	
5	20 pts	
TOTAL	100 pts	

1. (20 points) The discrete metric. In this exercise you can only use basic definitions, but no theorems. Let X be an infinite set and let $d: X \times X \rightarrow \mathbb{R}$ be defined by

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

(a) Show that X is a metric space.
(b) Show that $E \subset X$ is compact if and only if E is finite.
(c) Show that $x_{n} \rightarrow x$ if and only if there exists N such that $x_{n}=x$ for all $n \geq N$.
(d) Show that X is complete.
2. (20 points) Four questions about sequences. Using only the definitions, prove the following results:
(a) Every convergent sequence (in a metric space) is Cauchy.
(b) Every Cauchy sequence (in a metric space) is bounded.
(c) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent sequences in \mathbb{C}, then $\left\{x_{n} y_{n}\right\}$ is convergent.
(d) Show that if $\left\{x_{n}\right\}$ is a bounded increasing sequence in \mathbb{R}, then it is convergent. (Hint. You can figure out the limit.)
3. (20 points) Dini's theorem. Let X be a compact metric space and let $g_{n}: X \rightarrow \mathbb{R}$ be continuous functions satisfying

$$
g_{n}(x) \geq g_{n+1}(x) \quad \forall x \in X, \forall n, \quad \text { and } \quad \lim _{n \rightarrow \infty} g_{n}(x)=0 \quad \forall x \in X .
$$

(a) For arbitrary $\varepsilon>0$, consider the sets

$$
K_{n}^{\varepsilon}=\left\{x \in X: g_{n}(x) \geq \varepsilon\right\} .
$$

Show that

$$
\bigcap_{n=1}^{\infty} K_{n}^{\varepsilon}=\emptyset
$$

and therefore there exists N such that $K_{n}^{\varepsilon}=\emptyset$ for all $n \geq N$.
(b) Prove that $g_{n} \rightarrow 0$ uniformly in X.
4. (20 points) Let the functions $f_{n}:[0,1] \rightarrow[0,1]$ (for $n \in \mathbb{N}$) satisfy

$$
\begin{aligned}
f_{n}(0)=1 & \forall n, \\
f_{n}^{\prime}(x) \leq 0 & \forall n, \quad \forall x \in[0,1], \\
\lim _{n \rightarrow \infty} f_{n}(x)=0 & \forall x \in(0,1] .
\end{aligned}
$$

(a) Show that $\left\{f_{n}\right\}$ is uniformly convergent in $[\delta, 1]$ for all $\delta>0$.
(b) Show that $\left\{f_{n}\right\}$ is not uniformly convergent in $[0,1]$.
(c) Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0
$$

5. (20 points) The graph of a function. Let X and Y be metric spaces and consider the metric

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)
$$

in $X \times Y$. Let $f: X \rightarrow Y$ be a function and

$$
G=\{(x, f(x)): x \in X\} \subset X \times Y
$$

be its graph.
(a) Show that the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $X \times Y$ is convergent if and only if the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge in X and Y respectively.
(b) Show that if f is continuous, then the graph is closed.
(c) Show that if Y is compact and G is closed, then f is continuous. (Hint. Given $x_{n} \rightarrow x$, show that there exists a subsequence such that $f\left(x_{n_{k}}\right) \rightarrow f(x)$.)
(d) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}1 / x & x \neq 0 \\ 0 & x=0\end{cases}
$$

Show that the graph of f is closed but f is not continuous.
6. (20 extra points) Let $G:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be continuous, and consider the set

$$
\mathcal{F}=\left\{f(x)=\int_{0}^{1} G(x, y) g(y) d y: g \in \mathcal{C}([0,1]), \quad \int_{0}^{1}|g(x)| d x \leq 1\right\} .
$$

Show that \mathcal{F} is relatively compact in $\mathcal{C}([0,1])$.
(Extra space for Question 6)

