NAME:

MATH 600: Fundamentals of Real Analysis

Fall 2016
Midterm exam \# 1
October 5

READ CAREFULLY THESE INSTRUCTIONS

- Your answers have to be written in a fully coherent and readable way. You can work on scrap paper, but only what is written in this document will be graded.
- Correct answers written in a careless and mathematically non-rigorous way will get practically no credit.
- Jusfity your answers explaining what arguments and results you are using to get to your conclusions.
- Do not write anything in the exam (except in this cover page) that reveals your identity.
- You are not allowed to ask questions during the exam.

Sign and print your name and date here to show that you have read and understood these instructions.
\square

Write the same number

1	10 pts	
2	10 pts	
3	10 pts	
4	15 pts	
5	15 pts	
6	25 pts	
7	15 pts	
TOTAL	100 pts	

1. (10 points) Let $x, y \in \mathbb{R}$. Show that

$$
\sup \{p+q: p, q \in \mathbb{Q}, \quad p<x, \quad q<y\}=x+y .
$$

2. (10 points) Show that the set of irrational numbers

$$
\{x \in \mathbb{R}: x \notin \mathbb{Q}\}
$$

is uncountable.
3. (10 points) Let K_{n} for $n \in \mathbb{N}$ define a collection of compact non-empty sets with the property that

$$
K_{n+1} \subset K_{n} \quad \forall n \in \mathbb{N}
$$

Assume for the moment that

$$
\bigcap_{n=1}^{\infty} K_{n}=\emptyset
$$

Show that this assumption implies that

$$
K_{1} \subset \bigcup_{n=1}^{\infty} K_{n}^{c}
$$

and continue the argument to prove that there exists m such that $K_{1} \cap K_{m}=\emptyset$, and that this fact contradicts our assumption. State the theorem whose proof you have just given.
4. (15 points) Let $E \subset \mathbb{R}$, where \mathbb{R} is equipped with the Euclidean metric. Show that if E is upper bounded and closed, then $\sup E \in E$.
5. (15 points) Let $E \subset X$, where X is a metric space and let E^{\prime} be the set of its limit points. Show that E^{\prime} is closed. (Hint. Consider the set $\left(E^{\prime}\right)^{\prime}$.)
6. (25 points) Let X be a metric space, $x \in X$ and $r>0$. Show that

$$
\overline{N_{r}(x)} \subset\{y \in X: d(x, y) \leq r\}
$$

Show that the two sets are equal if $X=\mathbb{R}^{k}$ with the Euclidean distance and give an example (in the metric space of your choice) where the sets are not equal.
(Additional space for Problem 6)
7. (15 points) Let X be a metric space. The boundary of $E \subset X$ is defined as $\partial E=\bar{E} \cap \overline{E^{c}}$. Show that $\partial E=\bar{E} \backslash E^{\circ}=\left\{x \in \bar{E}: x \notin E^{\circ}\right\}$ and that E is closed if and only if $\partial E \subset E$.

