MATH 600: Fundamentals of Real Analysis

READ CAREFULLY THESE INSTRUCTIONS

- Your answers have to be written in a fully coherent and readable way. You can work on scrap paper, but only what is written in this document will be graded.
- Correct answers written in a careless and mathematically non-rigorous way will get practically no credit.
- Jusfity your answers explaining what arguments and results you are using to get to your conclusions.
- Do not write anything in the exam (except in this cover page) that reveals your identity.
- You are not allowed to ask questions during the exam.

Sign and print your name and date here to show that you have read and understood these instructions.
\square

Write the same number

1	10 pts	
2	10 pts	
3	10 pts	
4	10 pts	
5	15 pts	
6	15 pts	
7	15 pts	
8	15 pts	
TOTAL	100 pts	

1. (10 points) Let $E \subset X$, where X is a metric space and let E^{\prime} be the set of its limit points. Show that E^{\prime} is closed.
2. (10 points) Let $\mathbf{x} \in \mathbb{R}^{k}$ and $r>0$ (here \mathbb{R}^{k} is endowed with the Euclidean metric). Show that

$$
\partial N_{r}(\mathbf{x})=\left\{\mathbf{y} \in \mathbb{R}^{k}:|\mathbf{y}-\mathbf{x}|=r\right\} .
$$

3. (10 points). We say that a subset E of a metric space is complete when every Cauchy sequence in E converges to an element of E. Show that if E is complete, then it is closed and that any closed subset of E is also complete.
4. (10 points) Let $\mathbf{f}: X \rightarrow \mathbb{R}^{k}$ be continuous on the metric space X and let $\mathbf{d}_{1}, \ldots, \mathbf{d}_{m} \in \mathbb{R}^{k}$ be given vectors. Show that

$$
\left\{x \in X: \mathbf{f}(x) \cdot \mathbf{d}_{\ell} \leq 0 \quad \ell=1, \ldots, m\right\}
$$

is closed.
5. (15 points) Let $\left\{x_{n}\right\}$ be a sequence in a metric space X with the following property: there exists $x \in X$ such that every subsequence of $\left\{x_{n}\right\}$ contains a subsequence that converges to x. Show that $x_{n} \rightarrow x$.
6. (15 points) Let $f: X \rightarrow Y$ be a function defined between two metric spaces, and consider its graph

$$
G=\{(x, f(x)): x \in X\} \subset X \times Y
$$

and the metric

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)
$$

defined in $X \times Y$.
(a) Show that if f is continuous, then the graph is closed. (Hint. Use sequences.)
(b) Show that if Y is compact and G is closed, then f is continuous. (Hint. Given $x_{n} \rightarrow x$, show that there exists a subsequence such that $f\left(x_{n_{k}}\right) \rightarrow f(x)$.)
7. (15 points) Let $f:(0,1) \rightarrow \mathbb{R}$ be uniformly continuous.
(a) Show that there exists $M>0$ such that $|f(x)|<M$ for all x.
(b) Show that if $x_{n} \rightarrow 0$, then the sequence $f\left(x_{n}\right)$ is convergent as well.
(c) Show that $f\left(0_{+}\right)$exists.
8. (15 points) Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous in $[0,1]$ and differentiable in $(0,1)$. Assume that $f(0)=0$ and there exists $C>0$ such that

$$
\left|f^{\prime}(x)\right| \leq C|f(x)| \quad \forall x \in[0,1] .
$$

(a) Show that for all $x \in(0,1)$

$$
|f(x)| \leq \max _{c \in[0, x]}|f(c)|(C|x|)^{n} \quad \forall n
$$

(b) Prove that f is identically zero.

