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Do not share these lists of problems outside the scope of the course. Problems listed
as (R2.X) correspond to Rudin, Chapter 2, Problem X.

1. Some review.

(a) Show that given x ∈ R

x = sup{r ∈ Q : r ≤ x}.

(b) If X is an ordered set, E ⊂ X and there exists y ∈ E such that x ≤ y for all
x ∈ E, then y = supE. (In other words, if a set contains an upper bound of
the set, it has to be the supremum.)

(c) Given x, y ∈ R, show that

x+ y = sup{r + s : r, s ∈ Q, r ≤ x, s ≤ y}.

2. Several ‘norms’ in Rk. For a vector x = (x1, . . . , xk) ∈ Rk we define the non-
negative quantities

|x|1 :=
k∑

i=1

|xi|, |x|2 := |x| =

√√√√ k∑
i=1

|xi|2, |x|∞ := max
1≤i≤k

|xi|.

(a) Show that for ` ∈ {1,∞} we have the properties

|x|` = 0 ⇐⇒ x = 0 = (0, . . . , 0),

|λx|` = |λ| |x|` ∀x ∈ Rk, λ ∈ R,
|x + y|` ≤ |x|` + |y|` ∀,y ∈ Rk.

(b) Find the constants C`,m(k) for `,m ∈ {1, 2,∞} and any k ≥ 1 that make the
inequalities

|x|` ≤ C`,m(k)|x|m ∀x ∈ Rk

sharp. (By this we mean that the inequalities hold and you can find one vector
for which the inequality is an equality.)
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3. From norms to metrics. Let ‖ · ‖ : Rk → [0,∞) be a function satisfying

‖x‖ = 0 ⇐⇒ x = 0 = (0, . . . , 0),

‖λx‖ = |λ| ‖x‖ ∀x ∈ Rk, λ ∈ R,
‖x + y‖ ≤ ‖x‖+ ‖y‖ ∀,y ∈ Rk.

Show that d(x,y) := ‖x− y‖ defines a metric in Rk.

4. From metrics to norms. Assume that d? is a metric defined in Rk and that d? is
translation invariant

d?(x,y) = d?(x + z,y + z) ∀x,y, z ∈ Rk

and scale invariant

d?(λx, λy) = |λ|d?(x,y) ∀x,y ∈ Rk, λ ∈ R.

Show that ‖x‖ := d(x,0) defines a norm in Rk, that is, this function satisfies the
properties of Problem 2 above.

5. Let d0 : X ×X → R be a metric in the set X and consider the binary functions

d1(x, y) := min{d0(x, y), 1} d2(x, y) :=
d0(x, y)

1 + d0(x, y)
d3(x, y) = c d0(x, y)

(where in the last case c > 0 is a fixed number).

(a) Show that d1, d2, and d3 are metrics in X.

(b) Show that for every p ∈ X, r > 0, and i ∈ {0, 1, 2, 3}, there exists r′ > 0 such
that

N
dj
r′ (p) ⊂ Ndi

r (p) j 6= i.

(Here Ndi
r (p) is the neighborhood about p with radius r with respect to the

metric di.)

(c) Prove that if a set E ⊂ X is open with respect to the metric di, the it is
open with respect to the three other metrics. In other words, the metric spaces
(X, di) (i = 0, . . . , 3) have the same open sets.

6. Let d1, d2 : X ×X → R be two different metrics in X. Show that

d(x, y) := d1(x, y) + d2(x, y)

is a metric in X.

7. Give a rigorous proof that the sets

(a, b] := {x ∈ R : a < x ≤ b}, [a, b) := {x ∈ R : a ≤ x < b}

are not open (in R with the distance defined by the absolute value of the difference).
Show that the interior of both sets is (a, b).
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8. Let X be any set and consider the discrete distance

d(p, q) :=

{
1, p 6= q,

0, p = q.

Describe all neighborhoods of a point. Show that every subset of X is open.

9. Let X be a metric space where for every p ∈ X the singleton set {p} is open. Show
that every subset of X is open.

10. (R2.9) (a)-(c)

11. (R2.11)
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