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Do not share these lists of problems outside the scope of the course. Problems listed
as (R2.X) correspond to Rudin, Chapter 2, Problem X.

1. Bounded sets in metric spaces. In a metric space X we say that E ⊂ X is
bounded when there exist p ∈ X and r > 0 such that

d(p, q) ≤ r ∀q ∈ E.

Prove that:

(a) E is bounded if an only if there exists p ∈ X such that

{d(p, q) : q ∈ E} ⊂ R

is upper bounded in R.

(b) E is bounded if and only if for all p ∈ X there exists rp > 0 such that

d(p, q) ≤ rp ∀q ∈ E.

(c) E is bounded if and only if E is contained in an open neighborhood.

(d) Every compact set in X is bounded.

2. Let X be any infinite set endowed with the discrete metric. Show that every E ⊂ X
is closed and bounded, but only finite subsets of X are compact.

3. Compact sets are totally bounded. Let E ⊂ X be a compact set in a metric
space. Show that

∀ε > 0 ∃x1, . . . , xn ∈ E such that E ⊂
n⋃

j=1

Nε(xj).

(If a set E satisfies this property it is called totally bounded. We will see in the next
chapter that totally bounded closed sets in a complete metric space are compact.)

4. Give an example of a countable bounded set in R that is not compact.
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5. Give an example of Fn closed such that ∪nFn is not closed.

6. (R2.12)

7. (R2.13)

8. Separable metric spaces. A metric space X is separable if it contains E ⊂ X
such that E is countable and E = X.

(a) Show that Rk is separable. (Consider E = Qk.)

(b) If an infinite set X is endowed with the discrete metric, show that X is separable
if and only if X is countable.

(c) (R2.23)

(d) (R2.24)

(e) (R2.25)
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