Problems for Chapter 3 (Part II)

by F.J.Sayas, for MATH 600

October 15, 2018

Do not share these lists of problems outside the scope of the course. Problems listed as (R3.X) correspond to Rudin, Chapter 3, Problem X.

- 1. Review. Relatively compact sets. Let X be a metric space. Recall that a set $E \subset X$ is said to be bounded when $E \subset N_r(x)$ for some $x \in X$ and r > 0. We say that a set is relatively compact when its closure is compact.
 - (a) Show that relatively compact sets are bounded. (Hint. Show that the closure of a bounded set is bounded.)
 - (b) Show that subsets of relatively compact sets are relatively compact.
 - (c) Show that in \mathbb{R}^k , relatively compact sets are equal to bounded sets.
 - (d) Characterize bounded and relatively compact sets in X endowed with the discrete metric.
- 2. Review. An exercise on closures. Show that

 $\overline{A \cup B} = \overline{A} \cup \overline{B} \quad \text{and} \quad \overline{A \cap B} \subset \overline{A} \cap \overline{B}.$

Give an example where $\overline{A \cap B}$ is a proper subset of $\overline{A} \cap \overline{B}$. Can these relations be extended to arbitrary unions and intersections?

- 3. Let $\{x_n\}$ be a sequence in \mathbb{R} with the property $x_{n+1} \ge x_n$ for $n \ge N$. Show that if a subsequence converges, then the sequence converges. Show that if a subsequence diverges to $+\infty$, then the entire sequence diverges to $+\infty$.
- 4. Let $\{x_n\}$ be a sequence in a metric space X. Show that if $\lim x_{2n} = \lim x_{2n+1}$, then the sequence converges.
- 5. Show that the discrete measure defines a complete metric space on any set.
- 6. Show that $x_n \to x$ (in a metric space with metric d) implies

$$d(x_n, y) \to d(x, y) \qquad \forall y \in X.$$

7. Two equivalent metrics on the same set. Let X be a metric space with metric d and let

$$\check{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

define another metric in X. Show that convergent sequences with respect to both metrics are the same. Show that X is complete with respect to the metric d if and only if X is complete with respect to the metric \check{d} .

8. Metrics defined with sequences of metrics. Let $d_j : X \times X \to [0, \infty)$ be a metric for $j \ge 1$, and define

$$d(x,y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{d_j(x,y)}{1+d_j(x,y)} = \lim_{J \to \infty} \sum_{j=1}^J \frac{1}{2^j} \frac{d_j(x,y)}{1+d_j(x,y)}.$$

- (a) Show that d(x, y) is well defined and $d(x, y) \leq 1$ for all x, y. (Hint. It is defined as the limit of a non-decreasing sequence.)
- (b) Show that d is a metric in X.
- (c) Show that $x_n \to x$ with respect to the metric d if and only if $x_n \to x$ with respect to the metric d_j for all j. (Hint. For the difficult implication, given $\varepsilon > 0$ take J large enough so that $1/2^{J+1} < \varepsilon$.)