Problems for Chapter 6 and Prelim Exam problems

by F.J.Sayas, for MATH 600

November 12, 2018

Problems 1-4 have appeared in past preliminary exams.

1. Suppose f is a positive continuous function on $[a, b]$ and M is the largest value of f on $[a, b]$. Prove that

$$
\lim _{n \rightarrow \infty}\left(\int_{a}^{b} f(x)^{n} d x\right)^{1 / n}=M
$$

(Hint. Given $\varepsilon>0$, prove that there is a positive length interval on which $f(x) \geq$ $M-\varepsilon$.)
2. Let $x_{0} \in(0,1)$ and $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0, & x \neq x_{0} \\ 1, & x=x_{0}\end{cases}
$$

Prove that f is integrable and compute the integral. (To make it more interesting, use only the definition of the Riemann integral.)
3. Suppose $g:[a, b] \rightarrow \mathbb{R}$ is bounded and g^{2} is Riemann integragle. Does it follow that g is Riemann integrable?
4. (i) Show that if f is twice continuously differentiable and convex (concave up) in $[a, b]$, then

$$
(b-a) f\left(\frac{a+b}{2}\right) \leq \int_{a}^{b} f(x) d x .
$$

(Hint. Conside the Taylor expansion around the midpoint of the interval.)
(ii) Use the previous result to prove the estimate

$$
\sum_{n=2}^{\infty} \frac{1}{1+n^{2}} \leq \frac{\pi}{2}-\arctan (3 / 2)
$$

5. (R6.1)
6. (R6.4)
7. (R6.5)
8. (R6.7)
9. (R6.8)
10. (R6.9)
