Problems for Chapter 7

by F.J.Sayas, for MATH 600

November 27, 2018

1. **Dini's Theorem.** Prove the following theorem: Let f_n be an increasing sequence in $\mathcal{C}(K)$, where K is compact. If there exists $f \in \mathcal{C}(K)$ such that $f_n \to f$ pointwise, then the convergence is uniform. Sketch of the proof: consider the functions

$$g_n = f - f_n = |f - f_n| \in \mathcal{C}(K).$$

Given $\varepsilon > 0$, consider the sets

$$K_n = \{ x \in K : g_n(x) \ge \varepsilon \}.$$

Show that $K_N = \emptyset$ for some N.

2. Convergence of power series. Consider the power series

$$\sum_{n=1}^{\infty} a_n z^n,$$

for given complex coefficients $\{a_n\}$.

- (a) Show that if the series converges absolutely for a value z_0 and $r = |z_0|$, then the series converges uniformly in the closed disk $\{z \in \mathbb{C} : |z| \leq r\}$.
- (b) Show that power series converge uniformly on compact sets of their region of convergence $\{z \in \mathbb{C} : |z| < R\}$, where R is the radius of convergence of the series.
- 3. Some problems on algebras of functions. In all these cases \mathcal{A} is a self-adjoint (i.e., closed by conjugation) algebra of functions $f : E \to \mathbb{C}$, with no particular structure on the set E. We define

$$\mathcal{A}_{\mathbb{R}} = \{ f \in \mathcal{A} : f(x) \in \mathbb{R} \quad \forall x \in E \}.$$

- (a) Show that for all $f \in \mathcal{A}$, the functions $\operatorname{Re} f$ and $\operatorname{Im} f$ are also in \mathcal{A} .
- (b) Show that

$$\mathcal{A}_{\mathbb{R}} = \{\operatorname{Re} f : f \in \mathcal{A}\} = \{\operatorname{Im} f : f \in \mathcal{A}\}.$$

(c) Show that $\mathcal{A}_{\mathbb{R}}$ is a real algebra (with real scalars, instead of complex scalars).

- (d) Show that if \mathcal{A} separates points, so does $\mathcal{A}_{\mathbb{R}}$ (Hint. Given $x_1 \neq x_2$ and a function $f \in \mathcal{A}$ that separates x_1 and x_2 , you can choose the real or the imaginary part.)
- (e) Show that if \mathcal{A} vanishes at no point, the neither does $\mathcal{A}_{\mathbb{R}}$.
- 4. Let $\mathcal{A} \subset \mathcal{C}(K)$ be an algebra, where K is a compact metric space. Show that \mathcal{A} is an algebra. (Hint. Characterize elements of the closure as limits of sequences.)
- 5. Simple consequences of Weierstrass's Theorem. Assume that we have proved that: for every continuous $f : [0,1] \to \mathbb{C}$ there exists a sequence of polynomials $\{p_n\}$ such that $p_n \to f$ uniformly. Prove the following:
 - (a) For every continuous $f : [a, b] \to \mathbb{C}$, there exists a sequence of polynomials $\{p_n\}$ such that $p_n \to f$ uniformly in [a, b]. (Hint. Change variables.)
 - (b) For every continuous $f : [a, b] \to \mathbb{R}$, there exists a sequence of polynomials $\{p_n\}$, with real coefficients, such that $p_n \to f$ uniformly in [a, b]. (Hint. Take real parts.)
 - (c) For every continuous $f : [a, b] \to \mathbb{C}$ and fixed $c \in [a, b]$, there exists a sequence of polynomials $\{p_n\}$ with $p_n(c) = f(c)$ such that $p_n \to f$ uniformly in [a, b]. (Hint. If $q_n \to f$ uniformly, then $q_n(c) \to f(c)$.)
- 6. (R7.1)
- 7. (R7.2)
- 8. (R7.3)
- 9. (R7.9)
- 10. (R7.16)
- 11. (R7.18)