Connectedness

by F.J.Sayas, for MATH 600

October 22, 2018

In this worksheet, X will be a general metric space, unless something else is explicitly stated. When we refer to \mathbb{R} or \mathbb{R}^k , we will assume that the Euclidean metric is considered. Prove all the numbered assertions.

Let A and B be subsets of a metric space X. We say that A and B are **separated** when

 $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$.

Note that by definition, two separated sets have to be disjoint.

- (1) The sets (0,1) and (1,2) are separated in \mathbb{R} . However, (0,1] and (1,2) are not.
- (2) If we consider the discrete metric, disjoint is equivalent to separated.
- (3) If A and B are closed and disjoint, they are separated.
- (4) If A and B are open and disjoint, they are separated. (Hint. If they are not separated, we can assume without loss of generality that we can find $x \in A'$, $x \notin A$, $x \in B$. Take neighborhoods now.)
- (5) If $A_1 \subset A_2$ and $B_1 \subset B_2$ and the sets A_2 and B_2 are separated, so are A_1 and B_1 .

We say that $E \subset X$ is **connected** when

(6) \mathbb{Z} is not connected in \mathbb{R} .

A

(7) $(0,2) \setminus \{1\} = (0,1) \cup (1,2)$ is not connected in \mathbb{R} .

Proving that a given set is connected is somewhat more difficult. We are going to examine the case of \mathbb{R} in detail.

(8) (A side result.) If $A \subset \mathbb{R}$ is upper bounded, then $\sup A \in A$. (Hint. If $y = \sup A \notin A$ (otherwise, there is nothing to prove), then $(y - r, y) \cap A \neq \emptyset$ for all r.)

(9) Let $x, y \in E$ satisfy x < y and let $z \in (x, y)$. If $z \notin E$, then

$$E = ((-\infty, z) \cap E) \cup ((z, \infty) \cap E)$$

is a partition of E into separated sets so E is not connected.

(10) If E is not connected, we can take x < y where $x \in A$, $y \in B$ and $E = A \cup B$ is a partition of E into separated sets. Let

$$z = \sup(A \cap [x, y]).$$

- (a) $z \in \overline{A}$ and therefore $z \in E$ if and only if $z \in A$.
- (b) If $z \in A$, there exists $t \in (z, y)$ such that $t \notin E$.

Therefore, if E is not connected, we can find x < y in E such that $(x, y) \not\subset E$.

(11) $E \subset \mathbb{R}$ is connected if and only if

$$x, y \in E \quad x < y \qquad \Longrightarrow \qquad (x, y) \subset E.$$

- (12) $E \subset \mathbb{R}$ is connected if and only if E is an interval. (Hint. Examine bounded and unbounded cases.)
- (13) A set E in \mathbb{R}^k is convex when for all $\mathbf{x}, \mathbf{y} \in E$, the segment $\{(1-t)\mathbf{x}+t\mathbf{y} : t \in (0,1)\}$ is a subset of E. Convex subsets of \mathbb{R}^k are connected. (Hint. This is Problem 21 of Chapter 2 of Rudin. The problem contains several intermediate steps.)