Connectedness

by F.J.Sayas, for MATH 600

October 22, 2018

In this worksheet, X will be a general metric space, unless something else is explicitly stated. When we refer to \mathbb{R} or \mathbb{R}^{k}, we will assume that the Euclidean metric is considered. Prove all the numbered assertions.

Let A and B be subsets of a metric space X. We say that A and B are separated when

$$
A \cap \bar{B}=\emptyset \quad \text { and } \quad \bar{A} \cap B=\emptyset .
$$

Note that by definition, two separated sets have to be disjoint.
(1) The sets $(0,1)$ and $(1,2)$ are separated in \mathbb{R}. However, $(0,1]$ and $(1,2)$ are not.
(2) If we consider the discrete metric, disjoint is equivalent to separated.
(3) If A and B are closed and disjoint, they are separated.
(4) If A and B are open and disjoint, they are separated. (Hint. If they are not separated, we can assume without loss of generality that we can find $x \in A^{\prime}, x \notin A$, $x \in B$. Take neighborhoods now.)
(5) If $A_{1} \subset A_{2}$ and $B_{1} \subset B_{2}$ and the sets A_{2} and B_{2} are separated, so are A_{1} and B_{1}.

We say that $E \subset X$ is connected when

$$
\left.\begin{array}{c}
E=A \cup B \\
A \text { and } B \text { are separated }
\end{array}\right\} \quad \Longrightarrow \quad A=\emptyset \quad \text { or } \quad B=\emptyset .
$$

(6) \mathbb{Z} is not connected in \mathbb{R}.
(7) $(0,2) \backslash\{1\}=(0,1) \cup(1,2)$ is not connected in \mathbb{R}.

Proving that a given set is connected is somewhat more difficult. We are going to examine the case of \mathbb{R} in detail.
(8) (A side result.) If $A \subset \mathbb{R}$ is upper bounded, then $\sup A \in \bar{A}$. (Hint. If $y=\sup A \notin A$ (otherwise, there is nothing to prove), then $(y-r, y) \cap A \neq \emptyset$ for all r.)
(9) Let $x, y \in E$ satisfy $x<y$ and let $z \in(x, y)$. If $z \notin E$, then

$$
E=((-\infty, z) \cap E) \cup((z, \infty) \cap E)
$$

is a partition of E into separated sets so E is not connected.
(10) If E is not connected, we can take $x<y$ where $x \in A, y \in B$ and $E=A \cup B$ is a partition of E into separated sets. Let

$$
z=\sup (A \cap[x, y])
$$

(a) $z \in \bar{A}$ and therefore $z \in E$ if and only if $z \in A$.
(b) If $z \in A$, there exists $t \in(z, y)$ such that $t \notin E$.

Therefore, if E is not connected, we can find $x<y$ in E such that $(x, y) \not \subset E$.
(11) $E \subset \mathbb{R}$ is connected if and only if

$$
x, y \in E \quad x<y \quad \Longrightarrow \quad(x, y) \subset E .
$$

(12) $E \subset \mathbb{R}$ is connected if and only if E is an interval. (Hint. Examine bounded and unbounded cases.)
(13) A set E in \mathbb{R}^{k} is convex when for all $\mathbf{x}, \mathbf{y} \in E$, the segment $\{(1-t) \mathbf{x}+t \mathbf{y}: t \in(0,1)\}$ is a subset of E. Convex subsets of \mathbb{R}^{k} are connected. (Hint. This is Problem 21 of Chapter 2 of Rudin. The problem contains several intermediate steps.)

