Series

by F.J.Sayas, for MATH 600

November 12, 2018

In this worksheet, sequences will be tagged with the positive integers or with nonnegative integers, that is, we will consider a_{n} for $n \geq 0$.

Consider a sequence $\left\{a_{n}\right\}$ of complex numbers and the new sequence of partial sums

$$
s_{n}=a_{1}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k} .
$$

If $\left\{s_{n}\right\}$ converges, we say that the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

converges and we write

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{m \rightarrow \infty} s_{m}=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} a_{n} .
$$

It is clear that convergence of a series is not affected by changes in a finite number of terms of the series (although the value of the sum is).
(1) Cauchy's Criterion. The series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if for every $\varepsilon>0$ there exists N such that

$$
\left|\sum_{k=n}^{m} a_{k}\right|<\varepsilon \quad \forall m, n, \quad m \geq n \geq N .
$$

(Hint. Consider the sequence of partial sums $\left\{s_{n}\right\}$.)
(2) The general term of a convergent series. If $\sum_{n=1}^{\infty} a_{n}$ converges, then $a_{n} \rightarrow 0$. The reciprocal does not hold.
(Hint. Use Cauchy's Criterion with $m=n$. For the counterexample, take $a_{n}=1 / n$.)
A series is said to be absolutely convergent when

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|
$$

converges. Note that in this case, since the partial sums are a non-decreasing sequence, this is equivalent to the existence of $M>0$ such that

$$
\sum_{n=1}^{m}\left|a_{n}\right| \leq M \quad \forall m
$$

(3) Any absolutely convergent series is convergent. The reciprocal does not hold. (Hint. Use Cauchy's criterion. For the counterexample, use $a_{n}=(-1)^{n} / n$.)
(4) The comparison test. If

$$
\left|a_{n}\right| \leq b_{n} \quad \forall n
$$

and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges. If, however,

$$
0 \leq c_{n} \leq a_{n} \quad \forall n,
$$

and $\sum_{n=1}^{\infty} c_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
(Hint. For the first part, prove absolute convergence by showing that the partial sums are bounded.)
(5) An example: the harmonic series. Show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}
$$

is convergent for $\alpha>1$ and divergent (not convergent) for $0 \leq \alpha \leq 1$.
(Hint. For $\alpha>1$ study the partial sums $s_{2^{n}}$. The case $\alpha=2$ can be used as a template. For $\alpha \leq 1$, use the comparison test.)
(6) The root test. Let

$$
\alpha=\limsup \left|a_{n}\right|^{1 / n} .
$$

Show that:
(a) If $\alpha<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges. (Hint. There exists $\beta<1$ such that $\left|a_{n}\right|<\beta^{n}$ for large enough n. Why?)
(b) If $\alpha>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges. (Hint. Find a subsequence $\left\{a_{n_{k}}\right\}$ such that $\left|a_{n_{k}}\right|^{1 / n_{k}} \rightarrow \alpha$. Argue that a_{n} does not converge to zero.)
(c) Study the examples $a_{n}=1 / n$ and $a_{n}=1 / n^{2}$ to show that the case $\alpha=1$ is inconclusive.
(7) The ratio test.
(a) If

$$
\lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|<1,
$$

then $\sum_{n=1}^{\infty} a_{n}$ converges. (Hint. There exist $\beta<1$ and $N \in \mathbb{N}$ such that $\left|a_{n+1}\right| \leq \beta\left|a_{n}\right|$ for all $n \geq N$. Prove that $\left|a_{N+p} \leq \beta^{p}\right| a_{N} \mid$ for all $p \geq 1$.)
(b) If there exists $N \in \mathbb{N}$ such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right| \geq 1 \quad \forall n \geq N,
$$

then $\sum_{n=1}^{\infty} a_{n}$ diverges. (Hint. Show that a_{n} does not converge to zero.)
(c) Show that if

$$
\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow 1
$$

nothing can be said about the convergence of the series.
A power series is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} z^{n},
$$

where $\left\{c_{n}\right\}$ is a given sequence of complex numbers and $z \in \mathbb{C}$ is taken as a variable. Given a power series, we consider the parameters

$$
\alpha:=\lim \sup \left|c_{n}\right|^{1 / n} \in[0,+\infty] \quad \text { and } \quad R= \begin{cases}1 / \alpha & \text { if } \alpha \neq 0 \text { and } \alpha \neq+\infty \\ 0 & \text { if } \alpha=+\infty \\ +\infty & \text { in } \alpha=0\end{cases}
$$

Because of the following result, the value R is called the radius of convergence of the power series.
(8) The power series converges for all $z \in \mathbb{C}$ such that $|z|<R$ and diverges for all $z \in \mathbb{C}$ such that $|z|>R$. (Hint. Use the ratio test.)
(9) Study the convergence of the following power series

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \quad \sum_{n=0}^{\infty} z^{n}, \quad \sum_{n=1}^{\infty} \frac{z^{n}}{n} .
$$

