Simple properties of subsets

by F.J.Sayas, for MATH 600

August 14, 2018

As usual, will use the symbol \subset understanding that when $U \subset V$, we admit the possibility of $U=V$.

In this short worksheet we will be working on subsets of a set X. Given $A \subset X$ we write

$$
A^{c}=\{x \in X: x \notin A\}
$$

to denote the complement of A.
(a) Show that $\left(A^{c}\right)^{c}=A$.
(b) Show that $A \subset B$ if and only if $B^{c} \subset A^{c}$.
(c) Let I be any set of indices and let $A_{\alpha} \subset X, \alpha \in I$. Show that

$$
\left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}=\bigcap_{\alpha \in I} A_{\alpha}^{c}
$$

and

$$
\left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c}=\bigcup_{\alpha \in I} A_{\alpha}^{c}
$$

These two equalities are know as DeMorgan's Laws.
(d) Let I be any set of indices and let $A_{\alpha} \subset X, \alpha \in I$ and $B \subset X$. Show that

$$
\left(\bigcup_{\alpha \in I} A_{\alpha}\right) \cap B=\bigcup_{\alpha \in I}\left(A_{\alpha} \cap B\right)
$$

and

$$
\left(\bigcap_{\alpha \in I} A_{\alpha}\right) \cup B=\bigcap_{\alpha \in I}\left(A_{\alpha} \cup B\right) .
$$

These two equalities are called the distributive laws.

