Simple properties of subsets

by F.J.Sayas, for MATH 600

August 14, 2018

As usual, will use the symbol \subset understanding that when $U \subset V$, we admit the possibility of U = V.

In this short worksheet we will be working on subsets of a set X. Given $A \subset X$ we write

$$A^c = \{ x \in X : x \notin A \}$$

to denote the complement of A.

- (a) Show that $(A^c)^c = A$.
- (b) Show that $A \subset B$ if and only if $B^c \subset A^c$.
- (c) Let I be any set of indices and let $A_{\alpha} \subset X$, $\alpha \in I$. Show that

$$\left(\bigcup_{\alpha\in I}A_{\alpha}\right)^{c}=\bigcap_{\alpha\in I}A_{\alpha}^{c}$$

and

$$\left(\bigcap_{\alpha\in I}A_{\alpha}\right)^{c}=\bigcup_{\alpha\in I}A_{\alpha}^{c}.$$

These two equalities are know as DeMorgan's Laws.

(d) Let I be any set of indices and let $A_{\alpha} \subset X$, $\alpha \in I$ and $B \subset X$. Show that

$$\left(\bigcup_{\alpha\in I}A_{\alpha}\right)\cap B=\bigcup_{\alpha\in I}(A_{\alpha}\cap B)$$

and

$$\left(\bigcap_{\alpha\in I}A_{\alpha}\right)\cup B=\bigcap_{\alpha\in I}(A_{\alpha}\cup B).$$

These two equalities are called the distributive laws.