MATH 612: CM4ES&FM

Spring’14 Coding assignment # 2 Due March 21

1. For this piece of work, you will need to start with your own code of the steepest descent
and the conjugate gradient methods. They are the algorithms shown at the end of the
slides of the first week. Code them and test them. They solve systems Ax = b, where A is
real symmetric and positive definite. In addition to the approximate solution, they should
output the iteration number where the algorithm stopped. For the next collection of tests,
you’ll first need to create a large m x m real unitary matrix ). With this fixed matrix (do
not change it from experiment to experiment), you’ll create a matrix

A1
Am

This is the general form of a symmetric positive definite matrix. The numbers A; are
the eigenvalues and, at the same time, the singular values of A. The next ingredient is
a fixed non-zero vector x € R™, which you will keep for all your computations. Make
it somewhat equilibrated, with not too many crazy changes of magnitude in its entries.
Then you compute b = Az. In summary, Q and z are fixed and then, for each choice
of A\1,..., Am, you compute A and b. Then you solve Ax = b for a prescribed tolerance,
starting always with zg = b, and count how many iterations you needed to get the result.

A warning word now. You will need a somewhat large value of m to preceive many effects.
Try several until you start seeing things. The same applies to the tolerance. If the tolerance
(which is a relative value) is too large, you might not see the desired effects.

(a) Take A\; = C, A\, = 1, and all the other eigenvalues equispaced between then. Solve
and display the number of iterations as C' — oo.

(b) Take A\; = C' — oo and all other eigenvalues equispaced between 1 and 2. Solve and
display the number of iterations.

2. Make a function conditionNumber (A) that computes the 2—condition number of a matrix
using power iteration for A*A and for (A~1)*A~! withouth ever computing A*A and A~!.
Systems can be solved with the backslash command. Everything should be in the same
function. There should not be appeals to other pre-exisiting functions, like the TwoNorm
function you coded for the previous assignment. You can use expand that piece of code
though, as long as it complies with the rule that everything is in the same function. Test
it and compare it with Matlab’s own cond.



