MATH 612

Computational methods for equation solving and function minimization Exam \# 1 - Fast Rounds

Spring 2014 - University of Delaware

- Write your name in the first page
- Write a 3 digit number in the box provided
- Write the same 3 digit number in the box in the second page
- Ready, set,...

Problem 1

What is the result of the following commands?

$$
\begin{aligned}
& \text { list }=1: 0.2: 2 ; \\
& \text { list }=1 \text { ist }(\text { end }:-1: 1)
\end{aligned}
$$

Problem 2

What is the result of the following commands?

$$
\begin{aligned}
& A=\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 ; 5 & 6 & 8 ; 9 & 10 & 11 \\
A
\end{array}\right] ; \\
& A=A(: \text {, end:-1: }
\end{aligned}
$$

Problem 3

What is the result of the following commands?

$$
\begin{aligned}
& A=\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 ; 5 & 6 & 7 & 8
\end{array}\right]^{\prime} ; \\
& A(3,:)=[]
\end{aligned}
$$

Problem 4

What is the result of the following commands?

$$
\begin{aligned}
& x=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]^{\prime} ; \\
& \operatorname{sqrt}\left(x^{\prime} \star x\right)-\operatorname{sqrt}(\operatorname{sum}(\operatorname{abs}(x) \cdot \wedge 2))
\end{aligned}
$$

Problem 5

If x stores a row or column vector and we compute,...

```
sum(abs(x))
max(abs(x))
```

what have we computed?

Problem 6 (counts double)

We have the full and reduced SVD of an $m \times n$ matrix

$$
A=U \Sigma V^{*}=\widehat{U} \widehat{\Sigma} \widehat{V}^{*} .
$$

The columns of U are the vectors u_{1}, \ldots, u_{m}. The columns of V are v_{1}, \ldots, v_{n}. The matrix $\widehat{\Sigma}$ is $r \times r$. Give the results of the following computations:

- $u_{i}^{*} u_{j}$
- $V^{*} V$
- $A v_{j}$ for $j \leq r$
- $A v_{j}$ for $j \geq r+1$.

Problem 7

When we say that a matrix Q is unitary, what do we mean?

Problem 8

For this given matrix

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{array}\right]
$$

what is Σ in the SVD

$$
A=U \Sigma V^{*} \quad ?
$$

Problem 9

Define the Frobenius norm of a matrix

Problem 10

We define

$$
\|A\|_{p}=\sup _{0 \neq x \in \mathbb{C}^{n}} \frac{\|A x\|_{p}}{\|x\|_{p}}
$$

Show that if $\lambda \in \sigma(A)$, then $|\lambda| \leq\|A\|_{p}$.

Problem 11

The matrix $A^{*} A$ has a unique dominant eigenvalue, which is real. Why?

Problem 12

Show that

$$
x \in \operatorname{null}\left(A^{*} A\right) \quad \Longleftrightarrow \quad x \in \operatorname{null}(A)
$$

Problem 13

The reduced $Q R$ decomposition of a matrix A is

$$
A=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
0 & 0 \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right]
$$

Compute a full $Q R$ decomposition of A.

We have the reduced QR decomposition of a matrix A with full rank by columns:

$$
A=\widehat{Q} \widehat{R}
$$

Show what you need to do to solve the least squares problem

$$
\operatorname{minimize}\|b-A x\|_{2}
$$

Problem 15

Define the condition number of a square invertible number with respect to the p norm.

Problem 16

Let Q be a unitary matrix. What is its condition number in 2-norm? Why?

Let $u \in \mathbb{C}^{m}$ be a non-zero column vector and let

$$
H=I-2 u u^{*}
$$

Show that $H^{-1}=H$ if and only if $\|u\|_{2}=1$.

Problem 18

What is the result of the following computation?

$$
\begin{aligned}
& {[Q, R]=q r(\operatorname{randn}(5,5)) ;} \\
& Q^{\prime} \star Q
\end{aligned}
$$

What method is this and what does it compute?

```
for j=1:n
    v=A(:, j);
    for i=1:j-1
        R(i,j)=\operatorname{dot}(Q(:,i),v);
        v=v-R(i,j) *Q(:,i);
    end
    R(j,j)=norm(v);
    Q(:,j)=(1/R(j,j))*V;
end
```

If A is $m \times n$ and $k \leq \min \{n, m\}$, what size is B ? What is the rank of B ?

$$
\begin{aligned}
& {[\mathrm{U}, \mathrm{~S}, \mathrm{~V}]=\operatorname{sVd}(\mathrm{A}) ;} \\
& \mathrm{UU}=\mathrm{U}(:, 1: \mathrm{k}) ; \\
& \mathrm{VV}=\mathrm{V}(:, 1: \mathrm{k}) ; \\
& \mathrm{SS}=\mathrm{S}(1: \mathrm{k}, 1: \mathrm{k}) ; \\
& \mathrm{B}=\mathrm{UU} \star \mathrm{SS} \star \mathrm{VV}^{\prime} ;
\end{aligned}
$$

Problem 21

What do we understand by the normal equations associated to a system $A x=b$?

Problem 22

What is the result of the following computation?

$$
\begin{aligned}
& a=\left[\begin{array}{lll}
2 & 4 & 6
\end{array}\right] \cdot /\left[\begin{array}{lll}
2 & 2 & 3
\end{array}\right] \star 0 \cdot 5 ; \\
& a^{\prime} * a
\end{aligned}
$$

Problem 23

What is the result of the following computation?

$$
\begin{aligned}
& D=\left[\begin{array}{llllll}
3 & 0 & 0 ; 0 & -1 & 0 ; 0 & 0
\end{array}\right] ; \\
& \text { norm }(D, \inf)
\end{aligned}
$$

Problem 24

What is the result of the following computation?

$$
\left.\begin{array}{l}
A=\left[\begin{array}{lllllllll}
1 & 2 & 3 & 4 ; 5 & 6 & 7 & 8 ; 9 & 10 & 11
\end{array} 12\right] ; \\
A([1
\end{array}\right][,:)=A\left(\left[\begin{array}{ll}
3 & 1
\end{array}\right],:\right) \text { : }
$$

EXTRA QUESTIONS

Problem 25

What do we mean when we say that P is a projector?

Problem 26

What are the (possible) eigenvalues of a projector?

Let A be a matrix with full rank by columns. How is the matrix

$$
P=A\left(A^{*} A\right)^{-1} A^{*}
$$

related to a projector? (Do not prove anything! Just state as many facts as you can!)

Problem 28

What are $k 1$ and $k 2$?

$$
\left.\begin{array}{l}
\mathrm{b}=\left[\begin{array}{lllll}
0 & 1 & 2 & 0 & -3
\end{array}\right]^{\prime} ; \\
\mathrm{k} 1=\mathrm{find}(\mathrm{~b} \sim=0,1) \\
{[\sim, \mathrm{k} 2}
\end{array}\right]=\max (\mathrm{abs}(\mathrm{~b})) .
$$

Problem 29

What is the result of these lines of code?

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 ; 3 & 4
\end{array}\right] ; b=\left[\begin{array}{ll}
5 & 6
\end{array}\right]^{\prime} ; \\
& A=\left[\begin{array}{ll}
A & b
\end{array}\right]
\end{aligned}
$$

