MATH 612: CM4ES\&FM

Instructions

- The Assignment 2 and 3 problems make reference to problems at the end of the classnotes we have been using for the optimization part.
- One problem per page. (You can have two problems in different sides of the same page.)
- The fourth requires some coding. This problem has to be solved individually.

1. Show that if f_{1}, \ldots, f_{k} is convex and $\lambda_{1}, \ldots, \lambda_{k} \geq 0$, then $g=\lambda_{1} f_{1}+\ldots+\lambda_{k} f_{k}$ is convex. Show that if in addition f_{1} is strictly convex and $\lambda_{1}>0$, then g is strictly convex.
2. Show that if f_{1}, \ldots, f_{k} are convex, then $g(x)=\max \left\{f_{1}(x), \ldots, f_{k}(x)\right\}$ is convex. Show that if all f_{1}, \ldots, f_{k} are convex, then g is strictly convex.
3. Assignment 2. Problem 1(a), (c), and (d)
4. Assignment 2. Problem 2. (For this one, figure out how to use Matlab to solve quadratic programming problems, i.e., problems of minimization of quadratic functionals subject to linear restrictions.)
5. Assignment 3. Problem 2(a) and (b)
6. Assignment 3, Problem 3.
