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Right now

Write your name in the first page
Write a 3 digit number in the box provided
Write the same 3 digit number in the box in the second
page
Ready, set,...
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Problem 1

What is the result of the following commands?

>> A=[1 2 3 4;5 6 7 8;9 10 11 12];
>> p=[2 3 1];
>> A=A(p,:)
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Problem 2

What is the result of the following commands?

>> A=[1 2 3;2 3 4;3 4 5];
>> A(2:3,:)=A(2:3,:)-[2;3]*A(1,:)
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Problem 3

What is the result of the following commands?

>> A=[3 4 5;1 2 3];
>> A=[A A(:,3)]
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Problem 4

We have defined

>> A=randn(5);B=randn(5);c=ones(5,1);

We want to compute D = ABc. Write the MATLAB command
that computes this product in a way that reduces the number of
floating point operations.
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Problem 5

Here’s a while loop.

c=4;
i=1;
while c>1

c=c-2;
i=i+1;

end

What’s the value of i at the end?
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Problem 6

What is the result of the following commands?

>> A=[1 2 3;4 3 2;3 4 5;6 5 4];
>> A([2 4],:)=A([4 2],:)

FJS MATH 612 8 / 25



Problem 7

What is the result of the following commands?

>> list=1:2:7;
>> list=list(end:-1:1)
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Problem 8

What is the result of the following commands?

>> f = @(x) x.^2./(1+x);
>> f([1 2 3])
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Problem 9

Define strictly convex function.
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Problem 10

Let f be convex, and let x and y be global minima of f . Show
that (1− τ)x + τy is also a minimum for every τ ∈ (0,1).
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Problem 11

Let f be convex and α ∈ R. Show that the set

{x : f (x) ≤ α}

is convex.
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Problem 12 (counts double)

Let A and B be s1 × n and s2 × n matrices. Show that the set

C = {x ∈ Rn : Ax ≤ b, Bx = c}

is convex. Write the set in the form

C = {x ∈ Rn : Dx ≤ f}

for adequate D and f .
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Problem 13

Let f : Rn → R be differentiable. Define what we understand by
a descent direction at the point x .
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Problem 14

In class we have shown that a differentiable function of one
variable is convex if and only if

f (x) ≥ f (y) + f ′(y)(x − y) ∀x , y ∈ R.

Make a picture that explains what this property means.
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Problem 15

Give an example of an strictly convex function that does not
attain its minimum. You have to show that the function is strictly
convex as part of the solution.
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Problem 16

What is the goal of the following iteration? Can you name how
the method is called?

for ν ≥ 1
b = ∇f (x)
A = Hf (x) (Hessian matrix)
w = A−1b
ϕ0 = f (x), ψ0 = w · b
τ = γ
ϕ1 = f (x + τw)
while ϕ1 > ϕ0 + τβψ0

τ = τγ
ϕ1 = f (x + τw)

end
x = x + τw
stopping criterion

end
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Problem 17 (counts double)

We consider the problem of minimizing

f (x1, x2, x3) = x2
1 + 2x1x2 + 3x2

2 + x4
3

subject to

x1 + x2 + x3 = 2, x2
1 + x2

2 + x2
3 = 4.

Write the associated Lagrangian and the necessary conditions
for minimization.

(Hint. Write the constraints as fi(x) = 0 and include a Lagrange
multiplier for each constraint. The conditions are related to
finding stationary points for the Lagrangian.)
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Problem 18

What exactly do we mean when we talk about a Krylov space?
(How many ingredients are involved in the definition of a Krylov
space?)
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Problem 19

Define Hermitian positive definite matrix
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Problem 20

What do we call a Cholesky decomposition of a matrix? For
which matrices do these decompositions exist?
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Problem 21

We bring a square invertible matrix A and a vector b to an
Arnoldi iteration. After n iterations, can you say what have we
computed?
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Problem 22

The conjugate gradient method solves some systems

Ax = b.

What are the requirements on A for the CG method to apply?
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Problem 23

In the following product A is m ×m, Qn is m × n with
orthonornal columns, and Qn+1 is an extension of Qn with an
additional orthonormal column:

AQn = Qn+1



α1 β1

β1 α2 β2

β2 α3
. . .

. . . . . . βn−1
βn−1 αn

βn


Looking at the decomposition, what is Aqj?
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