MATH 612: CM4ES&FM

Spring'14

Work'n'code day

February 28

AN EXPLORATION OF HOUSEHOLDER MATRICES

In this document norms are always 2-norms. Let $u \in \mathbb{C}^n$ be a unit vector ||u|| = 1. The Householder matrix associated to u is the matrix

$$H_u := I - 2u \, u^*.$$

Prove all of the following results ignoring what we have done for projectors. The proofs are really easy.

- 1. Show that H_u is hermitian and unitary and therefore $H_u^2 = I$.
- 2. Show that $H_u u = -u$ and that

$$H_u v = v \quad \iff \quad v \perp u.$$

(These results show that defines H_u is a symmetry operator. Can you see around what?) What is the characteristic polynomial of H_u ? What is the determinant of H_u ?

- 3. Write the formula to compute $H_u v$ using only vector operators (the matrix H_u is not built).
- 4. Let ||y|| = 1 and let x be not proportional to x. Consider the vector

$$u := \frac{1}{\|x+s\|x\|y\|} (x+s\|x\|y), \qquad s = +1 \text{ or } -1.$$

Show that

$$H_u x = -s ||x||y = \mp ||x||y.$$

(Hint. Prove that $||x + s||x||y||^2 = 2(x + s||x||y)^*x$.)

5. Show that if u_1, \ldots, u_k are unit vectors, then

$$H = H_{u_k} \dots H_{u_1}$$

is a unitary matrix.

- 6. Write a program y=householdertransf(U,x) with the following specifications:
 - The input is an $n \times k$ matrix U whose k column vectors have unit norm, and a column vectors x;

• The output is

$$y = \underbrace{H_{u_k} \dots H_{u_2} H_{u_1}}_{H} x,$$

where u_1, \ldots, u_k are the columns of U.

- The Householder matrices cannot be built. Only vector operations are allowed.
- The code should accept an $n \times m$ input matrix x and output Hx. (You can ignore this in a first version of the code.)

Find a way of testing that you built the right code.

7. With the function of the previous exercise (no modifications allowed), and being given a matrix U from which you theoretically build the product of Householder matrices

$$H = H_{u_k} \dots H_{u_1},$$

show a way to compute $H^{-1}x$.

Householder's method. Let A be a given $m \times n$ matrix and assume that A has maximum rank by columns. To better describe the algorithm, start by making a copy

$$A^{(1)} := A.$$

At the step k (there will be n steps, counted from 1 to n), we have a matrix $A^{(k)}$. Its k-th column is decomposed in the following form

$$\begin{bmatrix} b_k \\ c_k \end{bmatrix}, \quad b_k \in \mathbb{R}^{k-1}, \quad c_k = \begin{vmatrix} s_k \\ \times \\ \vdots \\ \times \end{vmatrix} \in \mathbb{R}^{m-k+1}.$$

(In particular, in the first step, c_1 is the entire first column of A.) We then compute

$$v_k := \frac{1}{\|c_k + \operatorname{sign}(s_k)\|c_k\|e_1\|} (c_k + \operatorname{sign}(s_k)\|c_k\|e_1), \qquad e_1 = \begin{vmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{vmatrix} \in \mathbb{R}^{m-k+1},$$

and consider the new matrix

$$A^{(k+1)} := H_{u_k} A^{(k)}, \quad \text{where} \quad u_k := \begin{bmatrix} 0\\ v_k \end{bmatrix}.$$

The output of the method is the matrix $R = A^{(n)}$, which is uper triangular (why?) and a collection of vectors u_1, \ldots, u_n , associated to a matrix

$$H = H_{u_n} \dots H_{u_1},$$

so that $HA = A^{(n)} = R$. Then $Q = H^*$ satisfies A = QR.