MATH 612: CM4ES\&FM

Spring'14
Work'n'code day
February 28

AN EXPLORATION OF HOUSEHOLDER MATRICES

In this document norms are always 2 -norms. Let $u \in \mathbb{C}^{n}$ be a unit vector $\|u\|=1$. The Householder matrix associated to u is the matrix

$$
H_{u}:=I-2 u u^{*}
$$

Prove all of the following results ignoring what we have done for projectors. The proofs are really easy.

1. Show that H_{u} is hermitian and unitary and therefore $H_{u}^{2}=I$.
2. Show that $H_{u} u=-u$ and that

$$
H_{u} v=v \quad \Longleftrightarrow \quad v \perp u
$$

(These results show that defines H_{u} is a symmetry operator. Can you see around what?) What is the characteristic polynomial of H_{u} ? What is the determinant of H_{u} ?
3. Write the formula to compute $H_{u} v$ using only vector operators (the matrix H_{u} is not built).
4. Let $\|y\|=1$ and let x be not proportional to x. Consider the vector

$$
u:=\frac{1}{\|x+s\| x\|y\|}(x+s\|x\| y), \quad s=+1 \text { or }-1 .
$$

Show that

$$
H_{u} x=-s\|x\| y=\mp\|x\| y .
$$

(Hint. Prove that $\|x+s\| x\|y\|^{2}=2(x+s\|x\| y)^{*} x$.)
5. Show that if u_{1}, \ldots, u_{k} are unit vectors, then

$$
H=H_{u_{k}} \ldots H_{u_{1}}
$$

is a unitary matrix.
6. Write a program $y=h o u s e h o l d e r t r a n s f(U, x)$ with the following specifications:

- The input is an $n \times k$ matrix U whose k column vectors have unit norm, and a column vectors x;
- The output is

$$
y=\underbrace{H_{u_{k}} \ldots H_{u_{2}} H_{u_{1}}}_{H} x,
$$

where u_{1}, \ldots, u_{k} are the columns of U.

- The Householder matrices cannot be built. Only vector operations are allowed.
- The code should accept an $n \times m$ input matrix x and output $H x$. (You can ignore this in a first version of the code.)

Find a way of testing that you built the right code.
7. With the function of the previous exercise (no modifications allowed), and being given a matrix U from which you theoretically build the product of Householder matrices

$$
H=H_{u_{k}} \ldots H_{u_{1}}
$$

show a way to compute $H^{-1} x$.

Householder's method. Let A be a given $m \times n$ matrix and assume that A has maximum rank by columns. To better describe the algorithm, start by making a copy

$$
A^{(1)}:=A .
$$

At the step k (there will be n steps, counted from 1 to n), we have a matrix $A^{(k)}$. Its k-th column is decomposed in the following form

$$
\left[\begin{array}{c}
b_{k} \\
c_{k}
\end{array}\right], \quad b_{k} \in \mathbb{R}^{k-1}, \quad c_{k}=\left[\begin{array}{c}
s_{k} \\
\times \\
\vdots \\
\times
\end{array}\right] \in \mathbb{R}^{m-k+1} .
$$

(In particular, in the first step, c_{1} is the entire first column of A.) We then compute

$$
v_{k}:=\frac{1}{\left\|c_{k}+\operatorname{sign}\left(s_{k}\right)\right\| c_{k}\left\|e_{1}\right\|}\left(c_{k}+\operatorname{sign}\left(s_{k}\right)\left\|c_{k}\right\| e_{1}\right), \quad e_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \in \mathbb{R}^{m-k+1}
$$

and consider the new matrix

$$
A^{(k+1)}:=H_{u_{k}} A^{(k)}, \quad \text { where } \quad u_{k}:=\left[\begin{array}{c}
0 \\
v_{k}
\end{array}\right]
$$

The output of the method is the matrix $R=A^{(n)}$, which is uper triangular (why?) and a collection of vectors u_{1}, \ldots, u_{n}, associated to a matrix

$$
H=H_{u_{n}} \ldots H_{u_{1}}
$$

so that $H A=A^{(n)}=R$. Then $Q=H^{*}$ satisfies $A=Q R$.

