MATH 612: CM4ES\&FM

The Nelder-Mead algorithm

We are going to code the Nelder-Mead algorithm for unconstrained derivative-free optimization. In the description of the algorithm, the word continue will be used to mean that we move to the next iteration. (It corresponds to the MATLAB command of the same name.)
The input of the algorithm is:

- a function f of n variables,
- $n+1$ points $x_{i} \in \mathbb{R}^{n}$ such that the directions $x_{j}-x_{1}$ are linearly independent (we will store them in an $(n+1) \times n$ matrix
- four design parameters,

$$
\mu_{\mathrm{ref}}=1, \quad \mu_{\mathrm{exp}}=2, \quad \mu_{\mathrm{con}}=\frac{1}{2}, \quad \mu_{\mathrm{int}}=-\frac{1}{2} .
$$

- a tolerance value
- a value for the maximum number of evaluations of f.

We will also need a sorting routine: given the $n+1$ points x_{i} and the values $v_{i}=f\left(x_{i}\right)$, by sorting we mean to reorder the points so that

$$
v_{1} \leq v_{2} \leq \ldots \leq v_{n+1}
$$

This can be easily done using the MATLAB function sort. Some expressions will be shortened for better visibility of the algorithm.

```
compute \(v_{i}=f\left(x_{i}\right)\) for \(i=1, \ldots, n+1\)
while \(v_{\text {max }}-v_{\text {min }}>\) tol
    sort the points
    \(\bar{x}=\frac{1}{n} \sum_{j=1}^{n} x_{j}\)
    \(d=\bar{x}-x_{n+1}\)
    \(x_{\text {ref }}=\bar{x}+\mu_{\text {ref }} d\)
    \(v_{\text {ref }}=f\left(x_{\text {ref }}\right)\)
    if \(v_{1} \leq v_{\text {ref }}<v_{n}\)
        \(\left(x_{n+1}, v_{n+1}\right)=\left(x_{\text {ref }}, v_{\text {ref }}\right) \quad\) \% reflection
        continue
    else if \(v_{\text {ref }}<v_{1} \quad \%\) expension
        \(x_{\exp }=\bar{x}+\mu_{\exp } d\)
        \(v_{\text {exp }}=f\left(x_{\text {ref }}\right)\)
        \(\left(x_{n+1}, v_{n+1}\right)=\) best of \(\left(x_{\exp }, v_{\exp }\right)\) and \(\left(x_{\text {ref }}, v_{\text {ref }}\right)\)
        continue
    else if \(v_{n} \leq v_{\text {ref }}<v_{n+1} \quad \%\) contraction
        \(x_{\text {con }}=\bar{x}+\mu_{\text {con }} d\)
        \(v_{\text {con }}=f\left(x_{\text {con }}\right)\)
        if \(v_{\text {con }}<v_{\text {ref }}\)
            \(\left(x_{n+1}, v_{n+1}\right)=\left(x_{\text {con }}, v_{\text {con }}\right)\)
            continue
        end
    else if \(v_{\text {ref }}>v_{n+1} \quad\) \% interior contraction
        \(x_{\text {int }}=\bar{x}+\mu_{\text {int }} d\)
        \(v_{\text {int }}=f\left(x_{\text {int }}\right)\)
        if \(v_{\text {int }}<v_{n+1}\)
            \(\left(x_{n+1}, v_{n+1}\right)=\left(x_{\text {int }}, v_{\text {int }}\right)\)
            continue
        end
    end
    compute \(x_{i}=x_{1}+\frac{1}{2}\left(x_{i}-x_{1}\right)\) for \(i=2, \ldots, n+1 \quad \%\) shrinking
    compute \(v_{i}=f\left(x_{i}\right)\) for \(i=2, \ldots, n+1\)
end
```

The algorithm should also be complemented with a counter of the number of evaluations of f. Once this value is larger that the limit we had input, the code should stop.

