
MATH 612: CM4ES&FM

Spring’14 Work’n’code time May 12

The Nelder-Mead algorithm

We are going to code the Nelder-Mead algorithm for unconstrained derivative-free optimization.
In the description of the algorithm, the word continue will be used to mean that we move to the
next iteration. (It corresponds to the MATLAB command of the same name.)
The input of the algorithm is:

• a function f of n variables,

• n + 1 points xi ∈ Rn such that the directions xj − x1 are linearly independent (we will
store them in an (n+ 1)× n matrix

• four design parameters,

µref = 1, µexp = 2, µcon = 1
2 , µint = −1

2 .

• a tolerance value

• a value for the maximum number of evaluations of f .

We will also need a sorting routine: given the n + 1 points xi and the values vi = f(xi), by
sorting we mean to reorder the points so that

v1 ≤ v2 ≤ . . . ≤ vn+1.

This can be easily done using the MATLAB function sort. Some expressions will be shortened
for better visibility of the algorithm.

1



compute vi = f(xi) for i = 1, . . . , n+ 1
while vmax − vmin > tol

sort the points
x = 1

n

∑n
j=1 xj

d = x− xn+1

xref = x+ µrefd
vref = f(xref)
if v1 ≤ vref < vn

(xn+1, vn+1) = (xref , vref) % reflection
continue

else if vref < v1 % expension
xexp = x+ µexpd
vexp = f(xref)
(xn+1, vn+1) = best of (xexp, vexp) and (xref , vref)
continue

else if vn ≤ vref < vn+1 % contraction
xcon = x+ µcond
vcon = f(xcon)
if vcon < vref

(xn+1, vn+1) = (xcon, vcon)
continue

end
else if vref > vn+1 % interior contraction

xint = x+ µintd
vint = f(xint)
if vint < vn+1

(xn+1, vn+1) = (xint, vint)
continue

end
end
compute xi = x1 + 1

2(xi − x1) for i = 2, . . . , n+ 1 % shrinking
compute vi = f(xi) for i = 2, . . . , n+ 1

end

The algorithm should also be complemented with a counter of the number of evaluations of f .
Once this value is larger that the limit we had input, the code should stop.

2


