
MATH 612
Computational methods for equation solving

and function minimization – Week # 1

Instructor: Francisco-Javier ‘Pancho’ Sayas

Spring 2014 – University of Delaware

FJS MATH 612 1 / 34

Have a look at the syllabus

Attendance is expected and controlled
Evaluation: exams, problems (from the book – the difficult
ones), and code
Office hours: feel free to contact me at any time. Send an
email in advance. Don’t just show up.
My mailbox is off-limits!

Refer to the website for any doubt on calendar, rules, etc. All
documents will be duly posted there.

FJS MATH 612 2 / 34

Coding

For the next week, find you coding buddy/BFF. (You’ll be
working with them all semester long.) In a team, let the
typing be done by the person who is less confident with
matlab.
Repeat, repeat, repeat. Hit the wall. You learn coding by
making mistakes. You think you know how to do it. You
might not! Do it!
My code doesn’t work is not an acceptable question.
Your code has to be impeccable. (Dirty code will not be
accepted.)

If you don’t know how to code... start right now! Today, not
tomorrow! Download any guide to Matlab and start typing up all
the examples. Google A beginner’s guide to matlab

FJS MATH 612 3 / 34

The book

The text-book (Trefethen-Bau Numerical Linear Algebra) covers
the first 2/3 of the semester. I am not going to explain from the
book:

You are expected to start reading the book right away. By
next Monday, I’ll have assumed you have read Lectures 1
and 2.
Work out all the problems, especially the difficult ones.
I’ll give hints and general explanations of ideas that can be
read in the book. I’ll help with some of the problems.

I will prepare slides for some lectures. They will be posted a
couple of days later.

FJS MATH 612 4 / 34

WARMUP ALGORITHM

FJS MATH 612 5 / 34

An algorithm: it doesn’t matter what it does

Input:
a matrix A ∈ Rn×n

a column vector x0 ∈ Rn,
two parameters: tol and itMax

Process: compute the sequence

xn+1 =
1

‖Axn‖
Axn λn+1 = xn+1 · Axn+1

Stopping criterion: |λn+1 − λn| ≤ tol× |λn+1|.
Safety criterion: in case the stopping criterion is not reached,
stop when n > itMax

FJS MATH 612 6 / 34

Just one mathematical idea

If
Ax = λx

then
x · Ax = λ‖x‖2.

Therefore, if
Ax = λx and ‖x‖ = 1,

then
x · Ax = λ.

FJS MATH 612 7 / 34

Optimizing the iterations

Instead of ...

xn+1 =
1

‖Axn‖
Axn λn+1 = xn+1 · Axn+1

do

yn = Axn, xn+1 =
1
‖yn‖

yn λn+1 = xn+1 · Axn+1.

We have reduced the numer of matrix × vector multiplications
from 3 to 2 (in each iteration).

FJS MATH 612 8 / 34

Optimizing ... (one multiplication per iteration)

Instead of ...

yn = Axn, xn+1 =
1

‖yn+1‖
yn+1 λn+1 = xn+1 · Axn+1.

do ...

xn+1 =
1
‖yn‖

yn, yn+1 = Axn+1, λn+1 = xn+1 · yn+1.

Note that now we need to precompute y0 = Ax0 before starting
the iterations.

FJS MATH 612 9 / 34

Pseudocode (still in algorithmic form)

Input: A, x0, tol, itMax.

y0 = Ax0
for n = 0 : itMax− 1

xn+1 = (1/‖yn‖) yn
yn+1 = Axn+1
λn+1 = xn+1 · yn+1
if |λn+1 − λn| ≤ tol|λn+1|

we are ready to leave the program
end

end
if we got here we didn’t converge

Output: λn+1, xn+1 (at the moment of convergence)
Warning. There’s a problem in the first step. Can you see
which?

FJS MATH 612 10 / 34

Pseudocode (ready to code)

Input: A, x0, tol, itMax.

y = Ax0
λold =∞ % take advantage of Matlab’s infinity
for n = 1 : itMax % we have shifted the counter

x = (1/‖y‖) y
y = Ax
λnew = x · y
if |λnew − λold| ≤ tol|λnew|

leave the program with λnew and x
end
λold = λnew % update

end
error message

Output: λnew, x (at the moment of convergence)

FJS MATH 612 11 / 34

Simple rules for efficient coding

We will distinguish between:
functions: there’s input and there’s output; input is not
output; output is not input; (true most of the time) –
functions do specific well designed tasks
scripts: everything is input and output – scripts are written
for tests and final runs

Rules I will be imposing (code not following these rules will not
be accepted)

Code has to be indented (all loops and conditionals)
Use the same names for variables in the algorithms
description and in the code
Write a function prototype explaining input and output at
the beginning of the function

FJS MATH 612 12 / 34

The code: part I

function [lnew,x]=powermethod(A,x0,tol,itMax)

% [lnew,x]=powermethod(A,x0,tol,itMax)
%
% Input:
% A : n x n matrix
% x0 : column vector with n components
% tol : relative tolerance for stopping criterion
% itMax: maximum number of iterations
% Output:
% lnew : approximate eigenvalue
% x : approximate eigenvector (column vector)
%
% Last modified: February 11, 2014

FJS MATH 612 13 / 34

The code: part II

y=A*x0;
lold=Inf;
for n=1:itMax

x=(1/norm(y))*y;
y=A*x;
lnew=dot(x,y);
if abs(lnew-lold)<tol*abs(lnew)

return
end
lold=lnew;

end
display(’Maximum number of iterations reached...

without convergence’);
lnew=[];
x=[];
return

FJS MATH 612 14 / 34

EXPERIMENTS AND THEORY

FJS MATH 612 15 / 34

How to build diagonalizable matrices

To build an n × n real diagonalizable matrix, do as follows:
1 Create an invertible matrix P. Its columns will be the

eigenvectors.
2 Create a diagonal matrix D. Its values will be the

eigenvalues.
3 Mix them A = P D P−1

Note that when we compute Ax = P D P−1 x , we first compute
c = P−1 x , that is, we decompose

x = c1 p1 + . . .+ cn pn pj are the columns of P,

and then we multiply the coefficients by the eigenvalues

Ax = λ1 c1 p1 + . . .+ λn cn pn.

FJS MATH 612 16 / 34

Complex eigenvalues

To produce the eigenvalues α± ıβ, use the 2× 2 block[
α β
−β α

]
and make D a block diagonal matrix. In this case, the
associated columns of P, say p1 and p2, are not the
eigenvectors (they cannot be since they are real!). The
eigenvectors are p = p1 ± ıp2.

To create non-diagonalizable matrices, use the same strategy
substituting D by a Jordan form.

FJS MATH 612 17 / 34

Dominant eigenvalues

Let A be a real n × n matrix. The set of all eigenvalues (real
and complex) of A is called the spectrum of A and denoted
σ(A). We say that λ is a dominant eigenvalue of A if

|λ| ≥ |µ| ∀µ ∈ σ(A).

Note that there are many possibilities for dominant eigenvalues:

a single eigenvalue (with any multiplicity) separated from
the other eigenvalues in absolute value
two real eigenvalues with opposite signs, separated frm
the rest
two complex eigenvalues
etc

FJS MATH 612 18 / 34

When does the power method work?

Assume A satisfies:
it has a unique dominant eigenvalue (which is real) λ
for this dominant eigenvalue, the agebraic and geometric
multiplicities coincide1

Then, with probability one in the choice of initial vector x0, the
power method satisfies:

λn → λ and
{

xn → x∞ if λ > 0,
(−1)nxn → x∞ if λ < 0,

where
Ax∞ = λx∞ ‖x∞‖ = 1.

1there are as many linearly independent eigenvectors for λ as the
multiplicity in the characteristic polynomial

FJS MATH 612 19 / 34

Some questions

Are the hypotheses sharp? Yes, quite (see experiments)
What does probablity one mean? With exact arithmetic,
the probablily of the method not working, or going to a
non-dominant eigenvalue is zero. But you might get very
unlucky.
Any idea on the speed? (see experiments)
Can we verify the hypotheses in practical cases? Not
really. We might have additional information on the matrix.
Otherwise, it’s mission impossible and we have to find
other methods.
How about other eigenvalues? (See inverse and
shifted-inverse power methods)

FJS MATH 612 20 / 34

A proof

Let us prove convergence of the power method for the
particular case of diagonalizable matrices. Assume then that

λ1 = . . . = λk = λ |λ| > |λj | j ≥ k + 1

are the eigenvalues of A with associated eigenvectors, real or
complex, pj . We decompose

x0 = c1p1 + . . . ckpk︸ ︷︷ ︸
u∞

+ck+1pk+1 + . . .+ cnpn.

With probability one, u∞ 6= 0. Then

Amx0 = λmu∞ +
n∑

j=k+1

λm
j cjpj

= λm

u∞ +
n∑

j=k+1

(
λj

λ

)m

cjpj

 = λmum.

FJS MATH 612 21 / 34

The proof continues

Following the algorithm of the power method, it is simple to see
that

xm =
1

‖Amx0‖
Amx0 =

1
‖um‖

um.

However, um → u∞, which is an eigenvector associated to λ.
Therefore

xm → x∞ = (1/‖u∞‖)u∞,

where Ax∞ = λx∞, and

λm = xm · Axm → x∞ · Ax∞ = λ.

This proof shows how the eigenvector depends on the choice of
x0. It also shows that even if A is invertible, with probability one
xm 6= 0 for all m and the algorithm does not break down due to
a division by zero.

FJS MATH 612 22 / 34

Two (or three) observations, and one idea

1 If A is invertible, then

Ax = λx ⇐⇒ A−1x = 1
λ x .

2 For any real µ,

Ax = λx ⇐⇒ (A− µ I)x = (λ− µ) x .

3 Therefore, for real µ, if A− µI is invertible, then

Ax = λx ⇐⇒ (A− µ I)−1x =
1

λ− µ
x .

The idea

To use the power method for (A− µI)−1, you do not need to
compute this matrix. In each iteration, you solve a linear
system.

FJS MATH 612 23 / 34

To do

Test the power method for different types of matrices,
relaxing each of the hypotheses of the convergence
theorem.
For diagonalizable matrices with a single dominant
eigenvalue λ, the quantity

r :=
max{|µ| : µ ∈ σ(A), µ 6= λ}

|λ|

can be proved to be the rate of convergence of the method.
Test it. To do that you will need to count iterations leading
to convergence: modify the output of powermethod.
Program the inverse-shifted power method. You just need
two modifications in the algorithm:

yn+1 = (A− νI)−1xn+1, λn+1 =
1

xn+1 · yn+1
+ µ.

FJS MATH 612 24 / 34

A script for testing

P=[2 1 -3 0;...
1 3 1 1;...
2 2 1 -1;
0 1 0 -2]; % eigenvectors by columns

D=diag([1 2 3 4]); % eigenvalues
A=P*D*inv(P); % use inv only in cases like this
x0=rand(4,1); % uniform random in [0,1];

% randn would be Gaussian random

[lamb,x]=powermethod(A,x0,1e-7,100);

FJS MATH 612 25 / 34

Try these examples

D =

2
−3

1/2
1/4

 D =

2

2
1/2

1/4

D =

2
−2

1/2
1/4

 D =

2 −1
1 2

1
c

 c = 1,3

D =

2 1

2
1

1

 D =

2

2
1
1 1

FJS MATH 612 26 / 34

The shifted inverse power method

Input: A, x0, µ (shifting parameter), tol, itMax.

B = A− µI
y = B−1x0 % solve the system By = x0
λold =∞
for n = 1 : itMax

x = (1/‖y‖) y
y = B−1x
λnew = 1/(x · y) + µ
if |λnew − λold| ≤ tol|λnew|

leave the program with λnew and x
end
λold = λnew % update

end
error message

Output: λnew, x (at the moment of convergence)

FJS MATH 612 27 / 34

Code

function [lnew,x]=inversepowermethod(A,x0,mu,tol,itMax)

% Prototype/help lines not shown

B=A-mu*eye(size(A,1)); % size(A,1)=# rows of A
y=B\x0;
lold=Inf;
for n=1:itMax

x=(1/norm(y))*y;
y=B\x;
lnew=1/dot(x,y)+mu;
if abs(lnew-lold)<tol*abs(lnew)

return
end
lold=lnew;

end
display(’Maximum number of its w/o convergence’);
lnew=[]; x=[];
return

FJS MATH 612 28 / 34

A TRANSLATION EXERCISE

FJS MATH 612 29 / 34

The steepest descent method

Input: an n × n matrix A, two vectors b, x0, tol, itMax
Process:

dn = b − Axn; δn =
‖dn‖2

dn · Adn
xn+1 = xn + δnxn

Stopping criterion: ‖xn+1 − xn‖ ≤ tol ‖xn+1‖
Safety check: stop after itMax iterations

Code this!

FJS MATH 612 30 / 34

Some requirements

The format should be

[x,it]=SteepestDescent(A,b,x0,tol,itMax)

where it is the number of iteration at which the process is
stopped. If we reach the maximum number of iterations, return
the vector with a warning message. DO NOT FORGET THE
HEADER (help lines/prototype)

What does this do? This is a quite bad method to solve
iteratively a system

Ax = b

where A has to be symmetric and positive definite (this means
symmetric with all eigenvalues positive)

FJS MATH 612 31 / 34

How to test it

Create an invertible matrix P
Define A = P>P (this matrix is symmetric and PD)
Choose the solution x and compute the rhs b = Ax
Start with x0 = 0 or with x0 = b (they produce the same
iteration, why?)

FJS MATH 612 32 / 34

Another translation exercise

This is the Conjugate Gradient algorithm. We start with

r0 = b − Ax0 p0 = r0

and then iterate

αn =
rn · rn

pn · Apn
, xn+1 = xn + αnpn, rn+1 = rn − αnApn,

βn =
rn+1 · rn+1

rn · rn
, pn+1 = rn+1 + βnpn.

Stop when
|xn+1 − xn| = |αnpn| ≤ tol|xn+1|

or we have done more than itMax iterations.

FJS MATH 612 33 / 34

Instruction for coding this

Store Apn to avoid computing this matrix-vector product
twice.
Careful when updating rn. The dot product of rn × rn is
needed after rn+1 has been computed, so it has to be
stored.
For testing, use the same examples as in the Steepest
Descent method. (The Conjugate Gradient method is
much faster.)

END OF WEEK # 1

FJS MATH 612 34 / 34

