MATH 612
 Computational methods for equation solving and function minimization - Week \# 1

Instructor: Francisco-Javier 'Pancho' Sayas

Spring 2014 - University of Delaware

Have a look at the syllabus

- Attendance is expected and controlled
- Evaluation: exams, problems (from the book - the difficult ones), and code
- Office hours: feel free to contact me at any time. Send an email in advance. Don't just show up.
- My mailbox is off-limits!

Refer to the website for any doubt on calendar, rules, etc. All documents will be duly posted there.

Coding

- For the next week, find you coding buddy/BFF. (You'll be working with them all semester long.) In a team, let the typing be done by the person who is less confident with matlab.
- Repeat, repeat, repeat. Hit the wall. You learn coding by making mistakes. You think you know how to do it. You might not! Do it!
- My code doesn't work is not an acceptable question.
- Your code has to be impeccable. (Dirty code will not be accepted.)

> If you don't know how to code... start right now! Today, not tomorrow! Download any guide to Matlab and start typing up all the examples. Google A beginner's guide to matlab

The text-book (Trefethen-Bau Numerical Linear Algebra) covers the first $2 / 3$ of the semester. I am not going to explain from the book:

- You are expected to start reading the book right away. By next Monday, l'll have assumed you have read Lectures 1 and 2.
- Work out all the problems, especially the difficult ones.
- I'll give hints and general explanations of ideas that can be read in the book. I'll help with some of the problems.

I will prepare slides for some lectures. They will be posted a couple of days later.

WARMUP ALGORITHM

An algorithm: it doesn't matter what it does

Input:

- a matrix $A \in \mathbb{R}^{n \times n}$
- a column vector $x_{0} \in \mathbb{R}^{n}$,
- two parameters: tol and itMax

Process: compute the sequence

$$
x_{n+1}=\frac{1}{\left\|A x_{n}\right\|} A x_{n} \quad \lambda_{n+1}=x_{n+1} \cdot A x_{n+1}
$$

Stopping criterion: $\left|\lambda_{n+1}-\lambda_{n}\right| \leq$ tol $\times\left|\lambda_{n+1}\right|$. Safety criterion: in case the stopping criterion is not reached, stop when $n>$ itMax

Just one mathematical idea

If

$$
A x=\lambda x
$$

then

$$
x \cdot \boldsymbol{A} \boldsymbol{x}=\lambda\|\boldsymbol{x}\|^{2}
$$

Therefore, if

$$
A x=\lambda x \quad \text { and } \quad\|x\|=1
$$

then

$$
x \cdot A x=\lambda
$$

Optimizing the iterations

Instead of ...

$$
x_{n+1}=\frac{1}{\left\|A x_{n}\right\|} A x_{n} \quad \lambda_{n+1}=x_{n+1} \cdot A x_{n+1}
$$

do

$$
y_{n}=A x_{n}, \quad x_{n+1}=\frac{1}{\left\|y_{n}\right\|} y_{n} \quad \lambda_{n+1}=x_{n+1} \cdot A x_{n+1} .
$$

We have reduced the numer of matrix \times vector multiplications from 3 to 2 (in each iteration).

Optimizing ... (one multiplication per iteration)

Instead of ...

$$
y_{n}=A x_{n}, \quad x_{n+1}=\frac{1}{\left\|y_{n+1}\right\|} y_{n+1} \quad \lambda_{n+1}=x_{n+1} \cdot A x_{n+1}
$$

do ...

$$
x_{n+1}=\frac{1}{\left\|y_{n}\right\|} y_{n}, \quad y_{n+1}=A x_{n+1}, \quad \lambda_{n+1}=x_{n+1} \cdot y_{n+1} .
$$

Note that now we need to precompute $y_{0}=A x_{0}$ before starting the iterations.

Pseudocode (still in algorithmic form)

Input: A, x_{0}, tol, itMax.
$y_{0}=A x_{0}$
for $n=0$: itMax - 1

$$
\begin{aligned}
& x_{n+1}=\left(1 /\left\|y_{n}\right\|\right) y_{n} \\
& y_{n+1}=A x_{n+1} \\
& \lambda_{n+1}=x_{n+1} \cdot y_{n+1} \\
& \text { if }\left|\lambda_{n+1}-\lambda_{n}\right| \leq \text { tol }\left|\lambda_{n+1}\right|
\end{aligned}
$$

we are ready to leave the program end
end
if we got here we didn't converge
Output: λ_{n+1}, x_{n+1} (at the moment of convergence) Warning. There's a problem in the first step. Can you see which?

Pseudocode (ready to code)

Input: $A, x 0$, tol, itMax.
$y=A x 0$
$\lambda_{\text {old }}=\infty \quad$ \% take advantage of Matlab's infinity for $n=1$: itMax $\quad \%$ we have shifted the counter $x=(1 /\|y\|) y$
$y=A x$
$\lambda_{\text {new }}=x \cdot y$
if $\left|\lambda_{\text {new }}-\lambda_{\text {old }}\right| \leq$ tol $\left|\lambda_{\text {new }}\right|$
leave the program with $\lambda_{\text {new }}$ and x end
$\lambda_{\text {old }}=\lambda_{\text {new }} \quad$ \% update
end
error message
Output: $\lambda_{\text {new }}, x$ (at the moment of convergence)

Simple rules for efficient coding

We will distinguish between:

- functions: there's input and there's output; input is not output; output is not input; (true most of the time) functions do specific well designed tasks
- scripts: everything is input and output - scripts are written for tests and final runs

Rules I will be imposing (code not following these rules will not be accepted)

- Code has to be indented (all loops and conditionals)
- Use the same names for variables in the algorithms description and in the code
- Write a function prototype explaining input and output at the beginning of the function

```
function [lnew,x]=powermethod(A,x0,tol,itMax)
% [lnew,x]=powermethod(A,x0,tol,itMax)
    Input:
    A : n x n matrix
    x0 : column vector with n components
    tol : relative tolerance for stopping criterion
    itMax: maximum number of iterations
    Output:
    lnew : approximate eigenvalue
    x : approximate eigenvector (column vector)
    Last modified: February 11, }201
```

```
\(\mathrm{y}=\mathrm{A} * \mathrm{x} 0\);
lold=Inf;
for \(n=1\) :itMax
    \(x=(1 / \operatorname{norm}(y)) \star y\);
    \(y=A * x\);
    lnew \(=\operatorname{dot}(x, y)\);
    if abs (lnew-lold) <tol*abs (lnew)
            return
    end
    lold=lnew;
end
display('Maximum number of iterations reached...
                                    without convergence') ;
lnew= [];
\(\mathrm{x}=[\) ] ;
return
```


EXPERIMENTS AND THEORY

How to build diagonalizable matrices

To build an $n \times n$ real diagonalizable matrix, do as follows:
(1) Create an invertible matrix P. Its columns will be the eigenvectors.
(2) Create a diagonal matrix D. Its values will be the eigenvalues.
(3) Mix them $A=P D P^{-1}$

Note that when we compute $A x=P D P^{-1} x$, we first compute $c=P^{-1} x$, that is, we decompose

$$
x=c_{1} p_{1}+\ldots+c_{n} p_{n} \quad p_{j} \text { are the columns of } P
$$

and then we multiply the coefficients by the eigenvalues

$$
A x=\lambda_{1} c_{1} p_{1}+\ldots+\lambda_{n} c_{n} p_{n}
$$

Complex eigenvalues

To produce the eigenvalues $\alpha \pm \imath \beta$, use the 2×2 block

$$
\left[\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right]
$$

and make D a block diagonal matrix. In this case, the associated columns of P, say p_{1} and p_{2}, are not the eigenvectors (they cannot be since they are real!). The eigenvectors are $p=p_{1} \pm \imath p_{2}$.

To create non-diagonalizable matrices, use the same strategy substituting D by a Jordan form.

Dominant eigenvalues

Let A be a real $n \times n$ matrix. The set of all eigenvalues (real and complex) of A is called the spectrum of A and denoted $\sigma(A)$. We say that λ is a dominant eigenvalue of A if

$$
|\lambda| \geq|\mu| \quad \forall \mu \in \sigma(A)
$$

Note that there are many possibilities for dominant eigenvalues:

- a single eigenvalue (with any multiplicity) separated from the other eigenvalues in absolute value
- two real eigenvalues with opposite signs, separated frm the rest
- two complex eigenvalues
- etc

When does the power method work?

Assume A satisfies:

- it has a unique dominant eigenvalue (which is real) λ
- for this dominant eigenvalue, the agebraic and geometric multiplicities coincide ${ }^{1}$
Then, with probability one in the choice of initial vector x_{0}, the power method satisfies:

$$
\lambda_{n} \rightarrow \lambda \quad \text { and } \quad \begin{cases}x_{n} \rightarrow x_{\infty} & \text { if } \lambda>0 \\ (-1)^{n} x_{n} \rightarrow x_{\infty} & \text { if } \lambda<0,\end{cases}
$$

where

$$
A x_{\infty}=\lambda x_{\infty} \quad\left\|x_{\infty}\right\|=1
$$

${ }^{1}$ there are as many linearly independent eigenvectors for λ as the multiplicity in the characteristic polynomial

Some questions

- Are the hypotheses sharp? Yes, quite (see experiments)
- What does probablity one mean? With exact arithmetic, the probablily of the method not working, or going to a non-dominant eigenvalue is zero. But you might get very unlucky.
- Any idea on the speed? (see experiments)
- Can we verify the hypotheses in practical cases? Not really. We might have additional information on the matrix. Otherwise, it's mission impossible and we have to find other methods.
- How about other eigenvalues? (See inverse and shifted-inverse power methods)

A proof

Let us prove convergence of the power method for the particular case of diagonalizable matrices. Assume then that

$$
\lambda_{1}=\ldots=\lambda_{k}=\lambda \quad|\lambda|>\left|\lambda_{j}\right| \quad j \geq k+1
$$

are the eigenvalues of A with associated eigenvectors, real or complex, p_{j}. We decompose

$$
x_{0}=\underbrace{c_{1} p_{1}+\ldots c_{k} p_{k}}_{u_{\infty}}+c_{k+1} p_{k+1}+\ldots+c_{n} p_{n} .
$$

With probability one, $u_{\infty} \neq 0$. Then

$$
\begin{aligned}
A^{m} x_{0} & =\lambda^{m} u_{\infty}+\sum_{j=k+1}^{n} \lambda_{j}^{m} c_{j} p_{j} \\
& =\lambda^{m}\left(u_{\infty}+\sum_{j=k+1}^{n}\left(\frac{\lambda_{j}}{\lambda}\right)^{m} c_{j} p_{j}\right)=\lambda^{m} u_{m} .
\end{aligned}
$$

The proof continues

Following the algorithm of the power method, it is simple to see that

$$
x_{m}=\frac{1}{\left\|A^{m} x_{0}\right\|} A^{m} x_{0}=\frac{1}{\left\|u_{m}\right\|} u_{m} .
$$

However, $u_{m} \rightarrow u_{\infty}$, which is an eigenvector associated to λ. Therefore

$$
x_{m} \rightarrow x_{\infty}=\left(1 /\left\|u_{\infty}\right\|\right) u_{\infty}
$$

where $A x_{\infty}=\lambda x_{\infty}$, and

$$
\lambda_{m}=x_{m} \cdot A x_{m} \rightarrow x_{\infty} \cdot A x_{\infty}=\lambda
$$

This proof shows how the eigenvector depends on the choice of x_{0}. It also shows that even if A is invertible, with probability one $x_{m} \neq 0$ for all m and the algorithm does not break down due to a division by zero.

Two (or three) observations, and one idea

(1) If A is invertible, then

$$
A x=\lambda x \quad \Longleftrightarrow \quad A^{-1} x=\frac{1}{\lambda} x
$$

(2) For any real μ,

$$
A x=\lambda x \quad \Longleftrightarrow \quad(A-\mu I) x=(\lambda-\mu) x
$$

(3) Therefore, for real μ, if $A-\mu I$ is invertible, then

$$
A x=\lambda x \quad \Longleftrightarrow \quad(A-\mu I)^{-1} x=\frac{1}{\lambda-\mu} x
$$

The idea

To use the power method for $(A-\mu I)^{-1}$, you do not need to compute this matrix. In each iteration, you solve a linear system.

- Test the power method for different types of matrices, relaxing each of the hypotheses of the convergence theorem.
- For diagonalizable matrices with a single dominant eigenvalue λ, the quantity

$$
r:=\frac{\max \{|\mu|: \mu \in \sigma(A), \quad \mu \neq \lambda\}}{|\lambda|}
$$

can be proved to be the rate of convergence of the method. Test it. To do that you will need to count iterations leading to convergence: modify the output of powermethod.

- Program the inverse-shifted power method. You just need two modifications in the algorithm:

$$
y_{n+1}=(A-\nu l)^{-1} x_{n+1}, \quad \lambda_{n+1}=\frac{1}{x_{n+1} \cdot y_{n+1}}+\mu
$$

A script for testing

```
P}=[\begin{array}{llll}{2}&{1}&{-3}&{0;}
    1 3 1 1;...
    2 2 1 -1;
    0 1 0 -2]; % eigenvectors by columns
```

D=diag([11 22 3 4 $]$); \% eigenvalues
$\mathrm{A}=\mathrm{P} * \mathrm{D} * i n v(\mathrm{P})$; \% use inv only in cases like this
$x 0=r a n d(4,1) ; \quad$ uniform random in $[0,1]$;
\% randn would be Gaussian random
[lamb, x] =powermethod (A, x0, 1e-7, 100);

Try these examples

$$
\begin{aligned}
& D=\left[\begin{array}{llll}
2 & & & \\
& -3 & & \\
& & 1 / 2 & \\
& & & 1 / 4
\end{array}\right] \quad D=\left[\begin{array}{llll}
2 & & & \\
& 2 & & \\
& & 1 / 2 & \\
& & & 1 / 4
\end{array}\right] \\
& D=\left[\begin{array}{llll}
2 & & & \\
& -2 & & \\
& & 1 / 2 & \\
& & & 1 / 4
\end{array}\right] \quad D=\left[\begin{array}{cccc}
2 & -1 & & \\
1 & 2 & & \\
& & 1 & \\
& & & c
\end{array}\right] \quad c=1,3 \\
& D=\left[\begin{array}{llll}
2 & 1 & & \\
& 2 & & \\
& & 1 & \\
& & & 1
\end{array}\right] \quad D=\left[\begin{array}{llll}
2 & & & \\
& 2 & & \\
& & 1 & \\
& & 1 & 1
\end{array}\right]
\end{aligned}
$$

The shifted inverse power method

Input: $A, x 0, \mu$ (shifting parameter), tol, itMax.
$B=A-\mu I$
$y=B^{-1} x 0 \quad \%$ solve the system $B y=x_{0}$
$\lambda_{\text {old }}=\infty$
for $n=1$: itMax

$$
\begin{aligned}
& x=(1 /\|y\|) y \\
& y=B^{-1} x \\
& \lambda_{\text {new }}=1 /(x \cdot y)+\mu \\
& \text { if }\left|\lambda_{\text {new }}-\lambda_{\text {old }}\right| \leq \text { tol }\left|\lambda_{\text {new }}\right|
\end{aligned}
$$

leave the program with $\lambda_{\text {new }}$ and x
end
$\lambda_{\text {old }}=\lambda_{\text {new }} \quad \%$ update
end
error message
Output: $\lambda_{\text {new }}, x$ (at the moment of convergence)

Code

function [lnew, x]=inversepowermethod(A, x0, mu,tol,itMax)
\% Prototype/help lines not shown
$B=A-m u * e y e(\operatorname{size}(A, 1)) ; \quad \% \operatorname{size}(A, 1)=\#$ rows of A
$\mathrm{y}=\mathrm{B} \backslash \mathrm{x} 0$;
lold=Inf;
for $\mathrm{n}=1: i \mathrm{tMax}$
$x=(1 / \operatorname{norm}(y)) * y$;
$\mathrm{y}=\mathrm{B} \backslash \mathrm{x}$;
lnew=1/dot $(x, y)+m u$;
if abs(lnew-lold) <tol*abs(lnew)
return
end
lold=lnew;
end
display('Maximum number of its w/o convergence');
lnew=[]; $x=[]$;
return

A TRANSLATION EXERCISE

Input: an $n \times n$ matrix A, two vectors b, x_{0}, tol, itMax Process:

$$
d_{n}=b-A x_{n} ; \quad \delta_{n}=\frac{\left\|d_{n}\right\|^{2}}{d_{n} \cdot A d_{n}} \quad x_{n+1}=x_{n}+\delta_{n} x_{n}
$$

Stopping criterion: $\left\|x_{n+1}-x_{n}\right\| \leq$ tol $\left\|x_{n+1}\right\|$ Safety check: stop after itMax iterations

Code this!

Some requirements

The format should be

$$
[x, i t]=\text { SteepestDescent (A, b, x0,tol, itMax) }
$$

where it is the number of iteration at which the process is stopped. If we reach the maximum number of iterations, return the vector with a warning message. DO NOT FORGET THE HEADER (help lines/prototype)

What does this do? This is a quite bad method to solve iteratively a system

$$
A x=b
$$

where A has to be symmetric and positive definite (this means symmetric with all eigenvalues positive)

- Create an invertible matrix P
- Define $A=P^{\top} P$ (this matrix is symmetric and PD)
- Choose the solution x and compute the rhs $b=A x$
- Start with $x_{0}=0$ or with $x_{0}=b$ (they produce the same iteration, why?)

Another translation exercise

This is the Conjugate Gradient algorithm. We start with

$$
r_{0}=b-A x_{0} \quad p_{0}=r_{0}
$$

and then iterate

$$
\begin{gathered}
\alpha_{n}=\frac{r_{n} \cdot r_{n}}{p_{n} \cdot A p_{n}}, \quad x_{n+1}=x_{n}+\alpha_{n} p_{n}, \quad r_{n+1}=r_{n}-\alpha_{n} A p_{n} \\
\beta_{n}=\frac{r_{n+1} \cdot r_{n+1}}{r_{n} \cdot r_{n}}, \quad p_{n+1}=r_{n+1}+\beta_{n} p_{n} .
\end{gathered}
$$

Stop when

$$
\left|x_{n+1}-x_{n}\right|=\left|\alpha_{n} p_{n}\right| \leq \operatorname{tol}\left|x_{n+1}\right|
$$

or we have done more than itMax iterations.

Instruction for coding this

- Store $A p_{n}$ to avoid computing this matrix-vector product twice.
- Careful when updating r_{n}. The dot product of $r_{n} \times r_{n}$ is needed after r_{n+1} has been computed, so it has to be stored.
- For testing, use the same examples as in the Steepest Descent method. (The Conjugate Gradient method is much faster.)

END OF WEEK \# 1

