
MATH 612
Computational methods for equation solving

and function minimization – Week # 10

F.J.S.

Spring 2014 – University of Delaware

FJS MATH 612 1 / 43

Plan for this week

Discuss any problems you couldn’t solve from previous
lectures
We will cover Lectures 35, 36, and 38, and be done with
Linear Algebra
Coding assignment #3 is due next Monday
Once again, start thinking about your final coding
assignment

Remember that...
... I’ll keep on updating, correcting, and modifying the slides
until the end of each week.

FJS MATH 612 2 / 43

THE ROAD TO GMRES

FJS MATH 612 3 / 43

Review (1): Krylov and Arnoldi

Let b ∈ Cm and A ∈ Cm×m. We consider the subspaces

Kn := 〈b,Ab,A2b, . . . ,An−1b〉 n ≥ 1.

We care about these spaces as long as their dimensions are
equal to n. After that all of them are the same.

Arnoldi’s method is the modified Gram-Schmidt method applied
to find an orthonormal basis of the Krylov space Kn.

〈b,Ab,A2b, . . . ,Aj−1b〉 = 〈q1, . . . ,qj〉

We do not compute the QR decomposition of the Krylov matrix

Kn =

 b Ab . . . An−1b

 .
Still we keep score of all the computations in the GS process
(the entries of R, except for the first one ‖b‖, which will
magically reappear later).

FJS MATH 612 4 / 43

Review (2): Krylov and Arnoldi

q1 = 1
‖b‖2

b % first step apart
for j ≥ 1 % count on the next

v = Aqj % the newcomer
for i = 1 : j

hij = q∗i v % not R anymore
v = v − hijqi

end
hj+1,j = ‖v‖2 % stop if zero
qj+1 = 1

hj+1,j
v

end

Aqj = h1jq1 + h2jq2 + . . .+ hjjqj︸ ︷︷ ︸
orth. proj. onto Kj

+hj+1,jqj+1

FJS MATH 612 5 / 43

Review (3): Krylov and Arnoldi

Aqj = h1jq1 + h2jq2 + . . .+ hjjqj + hj+1,jqj+1, j = 1, . . . ,n

A

 q1 q2 . . . qn


︸ ︷︷ ︸

Qn

=

 q1 q2 . . . qn qn+1


︸ ︷︷ ︸

Qn+1



h11 h12 h13 . . . h1n
h21 h22 h23 . . . h2n

h32 h33
. . . h3n

.
...

hn,n−1 hnn
hn+1,n


︸ ︷︷ ︸

H̃n

FJS MATH 612 6 / 43

Review (4): Krylov and Arnoldi

AQn = Qn+1H̃n

A is A
Qn contains an orthonormal basis of Kn

Qn+1 contains one more vector, making for an orthonormal
basis of Kn+1

H̃ is (n + 1)× n Hessenberg

And now a computation and a definition:

Q∗nAQn = Q∗nQn+1H̃n = Hn

where Hn is n × n Hessenberg, obtained by removing the last
row of H̃n. Its eigenvalues are called Ritz values of A. They are
not eigenvalues of A, but they approximate them.

FJS MATH 612 7 / 43

An optimization problem

Assume that we have x0, a first guess for the solution of
Ax = b. We can think of a modified problem

Ae = r , r = b − Ax0, e = x − x0.

We are going to try and find e. For the same price, forget about
x0 (the book does –on purpose–) and think that x0 = 0.
A sort of frozen step of GMRES consists of minimizing

‖b − Ax‖2 with x ∈ Kn

FJS MATH 612 8 / 43

A sequence of equivalent problems

Minimize ‖b − Ax‖2 with x ∈ Kn

Minimize ‖AKnc − b‖2 with c ∈ Cn

Minimize ‖AQny − b‖2 with y ∈ Cn

Minimize ‖Qn+1H̃ny − b‖2 with y ∈ Cn

Minimize ‖H̃ny −Q∗n+1b‖2 with y ∈ Cn

Minimize ‖H̃ny − ‖b‖2e1‖2 with y ∈ Cn.

If we can find a QR decomposition of the rectangular
(n + 1)× n Hessenberg matrix H̃n, we are done. Why?

FJS MATH 612 9 / 43

A skeleton of GMRES

x0 = 0
Start with b and compute q1 = (1/‖b‖2)b
for j ≥ 1

Compute the vector qj+1 in Arnoldi’s method
Compute and store the j-th column of H̃j

Compute a QR decomposition of H̃j

Minimize ‖H̃jyj − ‖b‖2e1‖2 with yj ∈ Cj
Compute xj = Qjyj ≈ x
Decide if xj is close enough to xj−1. Stop if it is.

end

Small variation. Start with x0 6= 0 and substitute b by r0 = b − Ax0. In
this case xj ∈ x0 +Kj , so what’s in the Krylov space is the error
correction xj − x0 and not xj itself. And the Krylov space is triggered
by r0, not b.

FJS MATH 612 10 / 43

GIVENS AND THE MISSING LINK

FJS MATH 612 11 / 43

Givens rotations: facts

Givens’ method is similar to the Householder method but it
performs rotations instead of reflections to make zeros.
The resulting orthogonal matrices (for the simple steps)
are not symmetric.
A Givens rotation Gij(θ) locates the block[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
in the (i , j)× (i , j) submatrix. Other than that it is an
identity. Gij(−θ) = Gij(θ)

−1.
Multiplying Gij(θ)A involves only the i and j rows of A. It’s
quite cheap therefore.
Givens rotations can be applied to triangularize a matrix:
(n − 1) + (n − 2) + . . .+ 1 = n(n−1)

2 rotations are needed.

FJS MATH 612 12 / 43

Givens rotations for Hessenberg matrices

If H is an m × n Hessenberg matrix (many zero rows at the end
have been added to customize the rotation matrices size), then

Gn,n−1(θn−1) . . .G32(θ2)G21(θ1)H = R

is upper triangular.
To minimize ‖Hx − b‖, solve

Rx = Gn,n−1(θn−1) . . .G32(θ2)G21(θ1)b = bn.

FJS MATH 612 13 / 43

Progressive Hessenberg matrices

We have worked with a Hessenberg m × n matrix H̃n, and a
fixed right hand side k e1. (Note that we have artificially added
zeros to the end of the matrix and of the RHS. In GMRES they
were shorter. The minimization problem is the same. Why?)
We want to compute the next one, that is, how much of what we
used can we re-use? Before...

Gn,n−1(θn−1) . . .G32(θ2)G21(θ1)H̃n = Rn

... and after...

Gn,n(θn)Gn,n−1(θn−1) . . .G32(θ2)G21(θ1)H̃n+1 = Rn+1

so modify the RHS in the same way

Gn,n(θn)Gn,n−1(θn−1) . . .G32(θ2)G21(θ1)b = Gn,n(θn)bn.

FJS MATH 612 14 / 43

Final words and we are done

In GMRES/Arnoldi/Givens, in one step...
We compute qn+1 and the (n + 1)-th column of H̃n+1

We apply all past rotations to the new column (we couldn’t
do it before, because we didn’t know it)
We find the new rotation to make H̃n+1 triangular. This
adds one column to the right of upper triangular matrix.
Nothing else is modified. Why?
We apply the new rotation to the RHS
We solve the new upper triangular system

FJS MATH 612 15 / 43

TWO OBSERVATIONS

FJS MATH 612 16 / 43

A frozen step of GMRES

‖Ax − b‖2 = minimum, x = Knc, c ∈ Cn.

Once again, the Krylov matrix is implicit to the Arnoldi process
even if never explicitly produced

Kn =

 b Ab . . . An−1b


Knc = c1b + c2Ab + . . .+ cnAn−1b

AKnc = c1Ab + c2A2b + . . .+ cnAnb
b − AKnc = b − c1Ab − c2A2b − . . .− cnAnb

= (I − c1A− c2A2 − . . .− cnAn)b = pn(A)b

where pn is a polynomial of degree n with pn(0) = 1.

FJS MATH 612 17 / 43

An equivalent optimization problem

Find a polynomial

pn(x) = 1− c1x − . . .− cnxn

making
‖pn(A)b‖2 minimum.

With those coefficients we compute xn = Knc ≈ x = A−1b
Believe it or not, this is how GMRES convergence is analyzed.

Warning. With exact arithmetic GMRES delivers the exact
solution after n steps. Why? If we need to take n steps,
GMRES requires storing the large Qj matrices (basically
nothing else, and A is only used as an operator). If we restart
GMRES after k iterations (remember x0?), then the method is
called restarted GMRES or GMRES(k).

FJS MATH 612 18 / 43

When to solve and stop

We had phrased the stopping criterion as

Minimize ‖H̃jyj − ‖b‖2e1‖2 with yj ∈ Cj
Compute xj = Qjyj ≈ x
Decide if xj is close enough to xj−1. Stop if it is.

What we do is

Compute a full QR decomposition H̃j = Q̂jR̃j

Define ξ = Q̂∗j (‖b‖2e1) ∈ Cj+1

Solve R̃jyj = ξj ignoring the last row
Then res:=‖H̃jyj − ‖b‖2e1‖2 = abs of last comp. of ξj
If res < tol

Compute xj = Qjyj
Stop

end

FJS MATH 612 19 / 43

LANCZOS

FJS MATH 612 20 / 43

Arnoldi becomes Lanczos (1): Arnoldi’s iteration

...
for j ≥ 1 % count on the next

v = Aqj % the newcomer
for i = 1 : j

hij = q∗i v % not R anymore
v = v − hijqi

end
...

end

Aqj = h1jq1 + h2jq2 + . . .+ hjjqj + hj+1,jqj+1

We are going to focus now on the case of Hermitian matrices.

FJS MATH 612 21 / 43

Arnoldi becomes Lanczos (2): the key property

Assume that j ≥ 3 (we are trying to compute qj+1). We create
v = Aqj . We then compute

h1j = q∗1Aqj = (Aq1)
∗︸ ︷︷ ︸

∈K2

qj︸︷︷︸
⊥Kj−1

= 0,

and we correct

v = v − h1jq1 = v = Aqj .

Proceeding by induction

hij = 0 i < j − 1 ⇐⇒ i + 1 < j .

This means that the j column of the Hessenberg matrix H̃n
contains only three entries: hj−1,j ,hj,j ,hj+1,j .

FJS MATH 612 22 / 43

Arnoldi becomes Lanczos (3): first ideas

Let me repeat this. This means that the j column of the
Hessenberg matrix H̃n contains only three entries:
hj−1,j ,hj,j ,hj+1,j .

Instead of a Hessenberg matrix we have a tridiagonal
matrix.
The loop i = 1 : j can be reduced to i = j − 1 : j or actually
i = max{1, j − 1} : j . This fact reduces the complexity of
the Arnoldi iteration in one entire loop.

But there’s more... Remember how

Q∗nAQn = Q∗nQn+1H̃n = Hn

where Hn is like H̃n without the last row? Can you see why Hn is
Hermitian? This means that hj−1,j = hj,j−1, and we do not even
need to compute the first of the dot products in the internal loop.

FJS MATH 612 23 / 43

Arnoldi becomes Lanczos (4): almost there

q1 = (1/‖b‖)b
h1,0 = 0 % fictitious element
for j ≥ 1 % count on the next

v = Aqj %
v = v − hj,j−1qj−1
hjj = q∗j v
v = v − hjjqj
hj+1,j = ‖v‖
qj+1 = (1/hj+1,j)v

end

The red lines correspond to the old loop. Only two
substractions/projections are needed. For one of them we
already know the coefficient.

FJS MATH 612 24 / 43

Arnoldi becomes Lanczos (5): we got it

We rename αj = hjj , βj = hj+1,j

q1 = (1/‖b‖)b
β0 = 0
for j ≥ 1

v = Aqj %
v = v − βj−1qj−1
αj = q∗j v
v = v − αjqj
βj = ‖v‖
qj+1 = (1/βj)v

end

q1 = (1/‖b‖)b
β0 = 0
for j ≥ 1

v = Aqj
αj = q∗j v
v = v − βj−1qj−1 − αjqj
βj = ‖v‖
qj+1 = (1/βj)v

end

Aqj = βjqj+1 + αjqj + βj−1qj−1

FJS MATH 612 25 / 43

The associated decomposition(s)

AQn = Qn+1



α1 β1

β1 α2 β2

β2 α3
. . .

. βn−1
βn−1 αn
. . . βn


= Qn+1T̃n

Q∗nAQn =


α1 β1

β1 α2 β2

β2 α3
. . .

. βn−1
βn−1 αn

 = Tn

FJS MATH 612 26 / 43

A first possible use of Lanczos

Assume that b is such that Kn grow as far as Km = Cm. Then
we have a unitary matrix Qm such that

Q∗mAQm = Tm

where Tm is tridiagonal. We then use the QR method (or other
eigenvalue methods) to diagonalize Tm, which is a much
cheaper matrix to work with that A.

FJS MATH 612 27 / 43

A FAST VIEW OF CG

FJS MATH 612 28 / 43

GMRES vs CG

GMRES (Generalized Minimal RESidual) minizes the norm of
the residual in the Krylov space

‖b − Axn‖2 = minimum, xn ∈ Kn.

In CG (Conjugate Gradient), we use a different norm

‖x‖A = (xT Ax)1/2

(Today we’ll only do real symmetric matrices), and we minimize
the A−norm of the error

‖x∗ − xn‖A = minimum, xn ∈ Kn

where x∗ is the unknown solution of the system Ax∗ = b.

FJS MATH 612 29 / 43

A simple computation

1
2‖x − x∗‖2A = 1

2(x − x∗)T A(x − x∗)

= 1
2xT Ax − xT Ax∗ + 1

2x∗Ax∗
= 1

2xT Ax − xT b + constant

This shows that, up to a constant that is not known but it’s not
relevant either, we are minimizing the functional

1
2xT Ax − xT b

in the Krylov space Kn. Next week we’ll start with optimization.
We’ll see how this is a convex optimization problem. The
Steepest Descent method will be the result of applying a
general optimization method for this quadratic minimization
problem.

FJS MATH 612 30 / 43

Four sequences of vectors

Approximate solutions xn

Residuals rn = b − Axn

Errors (not computable, but being minimized)
en = x∗ − xn = A−1rn

Descent directions pn (these ones are new)

In CG, by definition

‖en‖A ≤ ‖en−1‖A ∀n.

This is because the n-th step of the minimization problem is
carried out in a bigger subspace Kn−1 ⊂ Kn.
The descent directions pn constitute an orthogonal (but not
orthonormal) basis of Kn w.r.t. the inner product defined by A.
They will satisfy

pT
j Api = 0 i 6= j .

They are called conjugate directions.
FJS MATH 612 31 / 43

The CG algorithm (αn is shifted w.r.t. the book)

CG hides a Lanczos iteration. You can find the derivation in the
wikipedia article (that derivation is not easy) or prove that the
next algorithm is equivalent to our claims (see Chapter 38 of
the book). We’ll do a simpler argument at the end. This is one
step of the method

αn−1 = (r>n−1rn−1)/(p>n−1Apn−1)
xn = xn−1 + αn−1pn−1 % advance
rn = b − Axn = rn−1 − αn−1Apn−1 % res. update
βn = (r>n rn)/(r>n−1rn−1)
pn = rn + βnpn−1 % next descent direction

There’s no need to store αn and βn. One matrix-vector
multiplication by iteration. Two inner products by iteration.

FJS MATH 612 32 / 43

General error estimate

Theorem
If A is symmetric and positive definite, Ax∗ = b, then for the CG
method

‖x∗ − xn‖A ≤ 2
(√

κ− 1√
κ+ 1

)n

‖x∗ − x0‖A

where κ is the condition number of A.

The proof of this result is not specially difficult. We won’t do it
though.

The bad news is that for badly conditioned matrices the
expected convergence rate is not very good.

FJS MATH 612 33 / 43

PRECONDITIONED CG

FJS MATH 612 34 / 43

The idea

If we can find a matrix M that is easy to invert (this means,
solving My = z is cheap) and M ≈ A in the sense that M−1A is
well conditioned, then the system

M−1Ax = M−1b

might be faster to solve than Ax = b. HOWEVER, the matrix
M−1A will not be symmetric positive definite. Here are our
hypotheses:

A is symmetric PD
M is symmetric PD and easy to invert

We will now work with a decomposition M = PP> for a matrix P
that we will not need to compute.

FJS MATH 612 35 / 43

The preconditioned system

Instead of considering the system

Ax = b

we consider the system

P−1AP−T y = P−1b, x = P−T y ,

where
P−T = (P−1)T = (PT)−1.

Note that
B = P−1AP−T

is symmetric PD.

Let me insist, we will get rid of P at the end.

FJS MATH 612 36 / 43

A step of CG for the preconditioned system

Version 1:

αn−1 = (r̂T
n−1r̂n−1)/(p̂T

n−1Bp̂n−1)
yn = yn−1 + αn−1p̂n−1
r̂n = r̂n−1 − αn−1Bp̂n−1
βn = (r̂T

n r̂n)/(r̂T
n−1r̂n−1)

p̂n = r̂n + βnp̂n−1

Version 2: computing also iterates for original system

αn−1 = (r̂T
n−1r̂n−1)/(p̂T

n−1P−1AP−T p̂n−1)
yn = yn−1 + αn−1p̂n−1
xn = L−T yn
r̂n = r̂n−1 − αn−1P−1AP−T p̂n−1
βn = (r̂T

n r̂n)/(r̂T
n−1r̂n−1)

p̂n = r̂n + βnp̂n−1

FJS MATH 612 37 / 43

A step of CG for the preconditioned system (2)

αn−1 = (r̂T
n−1r̂n−1)/((P−T p̂n−1)

T AP−T p̂n−1)
yn = yn−1 + αn−1p̂n−1
xn = L−T yn
r̂n = r̂n−1 − αn−1P−1AP−T p̂n−1
βn = (r̂T

n r̂n)/(r̂T
n−1r̂n−1)

p̂n = r̂n + βnp̂n−1

We then define pn = P−T p̂n and substitute

αn−1 = (r̂T
n−1r̂n−1)/(pn−1

T Apn−1)
yn = yn−1 + αn−1p̂n−1
r̂n = r̂n−1 − αn−1P−1Apn−1
βn = (r̂T

n r̂n)/(r̂T
n−1r̂n−1)

p̂n = r̂n + βnp̂n−1

FJS MATH 612 38 / 43

A step of CG for the preconditioned system (3)

αn−1 = (r̂T
n−1r̂n−1)/(pT

n−1Apn−1)
yn = yn−1 + αn−1p̂n−1
r̂n = r̂n−1 − αn−1P−1Apn−1
βn = (r̂T

n r̂n)/(r̂T
n−1r̂n−1)

p̂n = r̂n + βnp̂n−1

Note that

rn = b − Axn = P(P−1b − P−1AP−T yn) = Pr̂n.

and multiply the equations....

αn−1 = (r̂T
n−1r̂n−1)/(pT

n−1Apn−1)

P−T yn = P−T yn−1 + αn−1P−T p̂n−1
Pr̂n = Pr̂n−1 − αn−1Apn−1
βn = (r̂T

n r̂n)/(r̂T
n−1r̂n−1)

P−T p̂n = P−T P−1Pr̂n + βnP−T p̂n−1

FJS MATH 612 39 / 43

A step of CG for the preconditioned system (4)

We substitute again pn = P−T p̂n, xn = P−T yn, Pr̂n = rn

αn−1 = (r̂T
n−1r̂n−1)/(pT

n−1Apn−1)
xn = xn−1 + αn−1pn−1
rn = rn−1 − αn−1Apn−1
βn = (r̂T

n r̂n)/(r̂T
n−1r̂n−1)

p̂n = M−1rn + βnpn−1

... and finally note that

r̂T
n r̂n = (P−1rn)

T (P−1rn) = rT
n P−T P−1rn = rT

n M−1rn

FJS MATH 612 40 / 43

Final version (P has disappeared)

(In the first step p0 = P−T p̂0 = P−T r̂0 = P−T P−1r0 = M−1r0.)

x0 is given
r0 = b − Ax0
p0 = M−1r0
for n ≥ 1

αn−1 = (rT
n−1M−1rn−1)/(pT

n−1Apn−1)
xn = xn−1 + αn−1pn−1
rn = rn−1 − αn−1Apn−1
βn = (rT

n M−1rn)/(rT
n−1M−1rn−1)

p̂n = M−1rn + βnpn−1
end

Coding trick: use an additional sequence of vectors zn = M−1rn
to minimize preconditioning solves.

FJS MATH 612 41 / 43

Final version (algorithm)

x0 is given
r0 = b − Ax0
z0 = M−1r0
p0 = z0
for n ≥ 1

v = Apn−1 % Only matrix-vector multiplication
α = (rT

n−1zn−1)/(pT
n−1v)

xn = xn−1 + αpn−1
rn = rn−1 − αv
zn = M−1rn % Solve a simple system
β = (rT

n zn)/(rT
n−1zn−1)

pn = zn + βpn−1
end

FJS MATH 612 42 / 43

Final version (algorithm – stopping criterion missing)

Additional savings available: store rT
n−1zn−1 and do not keep

rn−1. Update variables all the time

x0 is given
r = b − Ax0
z = M−1r ; ξold = rT z
p = z
for n ≥ 1

v = Ap
α = (rT z)/(pT v)
x = x + αp
r = r − αv
z = M−1r ; ξnew = rT z
β = ξnew/ξold; ξold = ξnew
p = z + βp

end

FJS MATH 612 43 / 43

