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Plan for this week

Discuss any problems you couldn’t solve from previous
lectures
We will cover Chapter 3 of the notes Fundamentals of
Optimization by R.T. Rockafellar (University of
Washington). I’ll include a link in the website.
You should spend some time reading Chapter 1 of those
notes. It’s full of interesting examples of optimization
problems.
Homework assignment #4 is due next Monday
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UNCONSTRAINED OPTIMIZATION
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Notation and problems

Data: f : Rn → R (objective function). The feasible set for
this problem is Rn: all points of the space are considered as
possible solutions.
Global minimization problem. Find a global minimum of f :

x0 ∈ Rn f (x0) ≤ f (x) ∀x ∈ Rn.

Local minimization problem. Find x0 ∈ Rn such that there
exists ε > 0 satisfying

f (x0) ≤ f (x) ∀x ∈ Rn s.t. |x − x0| < ε

The absolute value symbol will be used for the Euclidean norm.

Look at this formula

max f (x) = −min(−f (x))
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Gradient and Hessian

Function f : Rn → R. Its gradient vector is

∇f (x) =
[

∂f
∂xi

]n

i=1
.

In principle, we will take the gradient vector to be a column
vector, so that we can dot it with a position vector x . However,
in many cases points x are considered to be row vectors and
then it’s better to have gradients as row vectors as well.
The Hessian matrix of f is the matrix of second derivatives

(Hf )(x) = Hf (x) =
[

∂2f
∂xi∂xj

]n

i,j=1
.

When f ∈ C2, the Hessian matrix is symmetric. Notation for the
Hessian is not standard.

FJS MATH 612 5 / 50



Small o notation and more

We say that g(x) = o(|x |k ) when

lim
|x |→0

|g(x)|
|x |k

= 0

For instance, the definition of differentiability can be written in
this simple way: f is differentiable at x0 whenever there exists a
vector, which we call ∇f (x0) such that

f (x) = f (x0) +∇f (x0) · (x − x0) + o(|x − x0|).

When a function is of class C2 in a neighborhood of x0 we can
write

f (x) = f (x0) +∇f (x0) · (x − x0)

+1
2(x − x0) · Hf (x0)(x − x0) + o(|x − x0|2)
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Descent directions

Let x0 ∈ Rn and take w ∈ Rn as a direction for movement.
Consider the function

0 ≤ t 7−→ ϕ(t) = f (x0 + tw).

Then ϕ′(t) = ∇f (x0 + tw) · w , and

ϕ(t) = ϕ(0) + tϕ′(0) + o(|t |) = f (x0) + t∇f (x0) · w + o(|t |).

Then w is a descent direction when there exists an ε > 0 such
that

ϕ(t) < ϕ(0) t ∈ (0, ε) ⇐⇒ ∇f (x0) · w < 0.

The last equivalence holds if ∇f (x0) 6= 0. The vector
w = −∇f (x0) gives the direction of the steepest descent.
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Stationary points

Let f have a local minimum at x0. Then, for all w ,
ϕ(t) = f (x0 + tw) has a local minimum at t = 0 and

ϕ′(0) = ∇f (x0) · w = 0.

This implies that

∇f (x0) = 0

Points satisfying ∇f (x0) = 0 are called stationary points.
Minima are stationary points, but so are maxima, and other
possible points.
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The sign of the Hessian at minima

Let f ∈ C2(Rn) and let x0 be a local minimum. Then

ϕ(t) = ϕ(0) + 1
2 t2ϕ′′(0) + o(t2) = f (x0) + t2 1

2w ·Hf (x0)w + o(t2)

has a local minimum at t = 0 for every w . This implies that

w · Hf (x0)w ≥ 0 ∀w ∈ Rn,

that is Hf (x0) is positive semidefinite.

FJS MATH 612 9 / 50



Watch out for reciprocal statements: a proof

If f is C2, ∇f (x0) = 0 and Hf (x0) is positive definite (not
semidefinite!), then f has a local minimum at x0.
Proof. For x 6= x0,

f (x) = f (x0) +
1
2(x − x0) · Hf (x0)(x − x0)︸ ︷︷ ︸

=g(x)>0

+ h(x)︸︷︷︸
=o(|x−x0|)2

On the other hand,

w · Hf (x0)w ≥ c|w |2 ∀w ∈ Rn, with c > 0

(why?) and therefore we can find ε > 0 such that

|h(x)| ≤ c
4 |x − x0|2 < |g(x)| 0 < |x − x0| < ε,

which proves that x0 is a strict local minimum.
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Watch out for reciprocal statements: counterexamples

If ∇f (x0) = 0 and Hf (x0) is positive semidefinite, things can go
in several different ways. In one variable

ψ(t) = t3

has ψ′(0) = 0 (stationary point), ψ′′(0) = 0 (positive
semidefinite), but there’s no local minimum at t = 0.
In two variables

f (x , y) = x2 + y3

has ∇f (0,0) = 0,

Hf (0,0) =
[

2 0
0 0

]
positive semidefinite

and no local minimum at the origin.
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SIMPLE FUNCTIONALS
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Linear functionals

Doing unconstrained minimization for linear functionals

f (x) = x · b + c

is not really an interesting problem. This is why:

∇f (x) = b, Hf (x) = 0.

Only constant functionals have minima, but all points are
minima in that case. Note, however, that we will deal with linear
functionals for constrained optimization problems.
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Quadratic functionals

Let A be a symmetric matrix, b ∈ Rn and c ∈ R. We then define

f (x) = 1
2x · Ax − x · b + c

and compute

∇f (x) = Ax − b, Hf = A.

Stationary points are solutions to Ax = b.
Local minima exist only when A is positive semidefinite.
If A is positive definite, then there is only one stationary
point, which is a global minimum. (Proof in the next slide.)
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Quadratic functionals (2)

If Ax0 = b and A is positive definite, then

f (x0) = f (x0) +
1
2(x − x0) · A(x − x0) > f (x0), x 6= x0,

because there’s no remainder in Taylor’s formula of order two.
What happens when A is positive semidefinite? On of these
two possibilities:

There are no critical points (Ax = b is not solvable). We
can (how?) then find x∗ such that Ax∗ = 0 and x∗ · b > 0.
Using vectors tx∗ for t →∞, we can see that f is
unbounded below
There is a subspace of global minima (all critical points =
all solutions to Ax = b).
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A control-style quadratic minimization problem

For a positive semidefinite matrix W , an invertible matrix C, and
suitable matrices and vectors D, b and b, we minimize the
functional:

f (u) = 1
2x ·Wx − x · b + |u|2, where Cx = Du + d

As an exercise, write this functional as a functional in the
variable u alone (in the jargon of control theory, x is a state
variable) and find the gradient and Hessian of f .
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CONVEXITY
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Convex functions (functionals)

A function f : Rn → R is convex when

f ( (1− τ)x0 + τ x1) ≤ (1− τ)f (x0) + τ f (x1)

∀τ ∈ (0,1), ∀x0, x1 ∈ Rn.

It is scrictly convex when

f ( (1− τ)x0 + τ x1)<(1− τ)f (x0) + τ f (x1)

∀τ ∈ (0,1), ∀x0 6=x1 ∈ Rn.

A function f is concave when −f is convex.
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Confusing? Easy to remember

In undergraduate textbooks, convex is said concave up,
and concave is said concave down.
Grown-ups (mathematicians, scientists, engineers) always
use convex with this precise meaning. There’s no
ambiguity. Everybody uses the same convention.
x2 is convex. Repeat yourself this many times.
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Line/segment convexity

Take x0 6= x1 and the segment

[0,1] 3 τ 7−→ x(τ) = (1− τ)x0 + τx1.

If the function f is convex, then the one dimensional function

ϕ(t) = f (x(t))

is also convex:

ϕ(t) = ϕ((1−t)0+t1) ≤ (1−t)ϕ(0)+tϕ(1) = (1−t)f (x0)+tf (x1).

This segment-convexity is equivalent to the general concept of
convexity. In other words, a function is convex if and only if it is
convex by segments for all segments.
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Jensen’s inequality

A function f is convex if and only if for all k ≥ 1, x0, . . . , xk ∈ Rn,
and τ0 + . . .+ τk = 1, τj ≥ 0,

f (τ0x0 + τ1x1 + . . .+ τkxk ) ≤ τ0f (x0) + τ1f (x1) + . . .+ τk f (xk )

The expression

k∑
j=0

τjxj where τj ≥ 0,∀j
k∑

j=0

τj = 1

is called a convex combination of the points x0, . . . , xk . The
set of all convex combinations of the points x0, . . . , xk is called
the convex hull of the points x0, . . . , xk .
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Jensen’s inequality: proof by induction

The case k = 1 is just the definition with τ0 = 1− τ and τ1 = τ .
For a given k

f (
k∑

j=0

τjxj) = f
(
τ0x0 + (1− τ0)(

k∑
j=1

τj

1− τ0
xj)
)

≤ τ0f (x0) + (1− τ0)f
( k∑

j=1

τj

1− τ0
xj

)

≤ τ0f (x0) + (1− τ0)
k∑

j=1

τj

1− τ0
f (xj) Note:

(∑k
j=1

τj
1−τ0

= 1
)

=
k∑

j=0

τj f (xj).

(Note that if τ0 = 1 there’s nothing to prove.)
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An argument

Assume that f is convex. If there exist x0 and ε > 0 such that

f (x0) ≤ f (x0 + εw) ∀w ∈ Rn with |w | = 1,

then

f (x0) ≤ f (x0 + εw) = f
(

ε
t+εx0 +

t
t+ε(x0 + (t + ε)w)

)
≤ ε

t+ε f (x0) +
t

t+ε f (x0 + (t + ε)w)
)
,

and

t
t+ε f (x0) =

(
1− ε

t+ε

)
f (x0) ≤ t

t+ε f (x0 + (t + ε)w)

which implies

f (x0) ≤ f (x0 + tw) ∀t ≥ ε ∀w with |w | = 1.
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A conclusion

The previous argument (and some minor additional work)
shows that for a convex function, any local minimum is a
global minimum.

This does not mean that convex functions have global minima.
For instance

e−x1 + e−x2 + . . .+ e−xn

is strictly convex (why?) and does not have minimum value.
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Another result

If x0, . . . , xk are minima of a convex function

f (x0) = . . . = f (xk ) ≤ f (x) ∀x ∈ Rn,

then with for any convex combination

c ≤ f (
k∑

j=0

τjxj) ≤
k∑

j=0

τj f (xj) = c
k∑

j=0

τj = c.

Therefore the convex hull of a set of minima contains also
minima.
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Scrict convexity brings uniqueness

If x0 6= x1 are two global minima of a scritcly convex function

c = f (x0) = f (x1) ≤ f (x) ∀x ∈ Rn,

then
f (1

2x0 +
1
2x1) <

1
2 f (x0) +

1
2 f (x1) = c,

which contradicts our hypothesis on having found two minima.
The strict inequality does not happen when x0 = x1 and this
shows uniqueness.
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CONVEXITY OF SMOOTH
FUNCTIONS
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Convexity and tangent line

Let ϕ : R→ R. Then ϕ is convex if and only if

ϕ(t) ≥ ϕ(τ) + ϕ′(τ)(t − τ)︸ ︷︷ ︸
tangent line at τ

∀t , τ. (1)

Proof. Take t > τ . Then

ϕ is convex ⇐⇒ ϕ′ is non-decreasing (HW4)

=⇒ ϕ(t)− ϕ(τ)
t − τ

≥ ϕ′(τ) (MVT)

(A similar argument works for τ > t .) Using (1) for the pairs (t , τ) and
(τ, t) proves that

(ϕ′(τ)− ϕ′(t))(t − τ) ≤ 0 ∀t , τ,

that is, ϕ′ is non-decreasing.
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Convexity and tangent plane

Let f : Rn → R be differentiable at every point. Then f is convex
if and only if

f (y) ≥ f (x) +∇f (x) · (y − x)︸ ︷︷ ︸
tangent plane at x

∀x , y ∈ Rn. (2)

Proof. Let R 3 t 7→ z(t) = x + t(y − x), and ϕ(t) = f (z(t)). If f is
convex, then ϕ is convex and by the one-dimensional result

ϕ(1) ≥ ϕ(0) + ϕ′(0) that is, (??).

If (??) holds, then

ϕ(t) = f (z(t)) ≥ f (z(τ))+∇f (z(τ)) ·(z(t)− z(τ))︸ ︷︷ ︸
(t−τ)(y−x)

= ϕ(τ)+ϕ′(τ)(t−τ)

and ϕ is convex. Finally, line-convexity implies convexity.
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Corollary: stationary points of convex functions

If f is convex and differentiable and x0 is a stationary point

∇f (x0) = 0,

then x0 is a global minimum.

Proof. We know that

f (x) ≥ f (x0) +∇f (x0) · (x − x0) = f (x0) ∀x ∈ Rn,

so this is the proof.

If f is strictly convex and differentiable, then there is at most one
stationary point which will be the only global minimum.
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Strict convexity

Let f : Rn → R be differentiable at every point. Then f is convex
if and only if

f (y) > f (x) +∇f (x) · (y − x)︸ ︷︷ ︸
tangent plane at x

∀x , y ∈ Rn, y 6= x

The argument is very similar. Use first that for functions of
one-variable, strict convexity of ϕ is equivalent to ϕ′ being
increasing. Then use line parametrizations to go from n
dimensions to one dimension.
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Convexity and second derivative

Let ϕ : R→ R be twice differentiable.
ϕ is convex if and only if ϕ′′(t) ≥ 0 for all t . (Proof. ϕ is
convex iff ϕ′ is non-decreasing!)
If ϕ′′(t) > 0 for all t , then ϕ is convex. (Proof. ϕ′ is
increasing!)
The function ϕ(t) = t4 is strictly convex, but ϕ′(0) = 0.

Example. exp(t) is strictly convex.
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Convexity and Hessian

Let f : Rn → R be twice differentiable. Then f is convex if and
only if

Hf (x) is positive semidefinite ∀x .

If Hf (x) is positive definite for all x , then f is strictly convex.

Proof. Take z(t) = x + t(y − x) and ϕ(t) = f (z(t)). Then f is convex if
and only if all the functions ϕ are convex (for arbitrary choice of x and
y ), if and only if

ϕ′′(τ) = (y − x) · Hf (x)(y − x) ≥ 0 ∀x , y .

The strictly convex case is similar.
Example and counter-example. The function exp(b · x), with
bi 6= 0 for all i is strictly convex. The function x4

1 + . . .+ x4
n is

strictly convex but has vanishing Hessian at the origin.
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DESCENT METHODS
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A problem and two ideas

Problem. Find the unconstrained minimum of a (convex)
function f .
Goal of the method. Produce a sequence of points reducing
the value of f :

f (xν) > f (xν+1) ∀ν.

Find a descent direction. For each ν, find a descent direction
wν , that is,

f (xν + twν) < f (xν) for 0 > t > ε.

If f is differentiable: ∇f (xν) · wν < 0. The steepest descent
method consists of taking wν = −∇f (xν).
Do a line search. Find a value tν > 0 ensuring that

f (xν + tνwν) < f (xν)

and define xν+1 = xν + tνwν .
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Exact line search

We have the point xν and the descent direction wν . We then
define the function

[0,∞) 3 t 7−→ ϕ(t) = ϕν(t) = f (xν + t wν).

This function decreases near 0. If f is convex, this function is
convex and: (a) either has a minimum at some t > 0, (b) or is
unbounded below (so is the original function); (c) or decreases
to a limit as t →∞.
We assume that we are in the (a) case. We then solve the
one-dimensional minimization problem:

find tν > 0 such that ϕ(tν) ≤ ϕ(t) ∀t ∈ [0,∞).
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Exact line search (2)

If f is convex, so is ϕ(t) = f (xν + twν). If f is differentiable, we
only need to look for a stationary point

ϕ′(t) = 0 ⇐⇒ ∇f (xν + twν) · wν = 0.

This is a non-linear equation of a single variable. It can be
solved with Newton iterations:

τk+1 = τk −
ϕ(τk )

ϕ′(τk )
,

at the cost of one evaluation of f and one of ∇f at each
iteration.
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Backtracking

If f is differentiable (actually convexity is enough but we won’t
say why), then

1
τ
(ϕ(τ)− ϕ(0)) τ→0−→ ϕ′(0) < βϕ′(0) < 0,

for 0 < β < 1 (chosen parameter). We then look for 0 < τ < 1
satisfying

ϕ(τ)− ϕ(0) < τ β ϕ′(0) < 0.

The value τ is found by considering τ = γk as k grows, where
0 < β < γ < 1 is another desing parameter.
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Backtracking (2)

for ν ≥ 0
find a descent direction w
φ0 = f (x)
ψ0 = ∇f (x) · w
τ = γ
ϕ1 = f (x + τ w)
while ϕ1 ≥ ϕ0 + τβψ0

τ = τγ
ϕ1 = f (x + τ w)

end
x = x + τw
stopping criterion

end
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Steepest descent for quadratic functions

The objective function is

f (x) = 1
2x · Ax − x · b,

where A is symmetric positive definite. We know that

∇f (x) = Ax − b.

At the iteration ν, we have xν and compute the descent
direction

wν = −∇f (xν) = b − Axν = rν .

Therefore, the descent direction is the residual.
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Steepest descent for quadratic functions: line search

Follow me!

ϕ(t) = f (xν + twν)

= 1
2(x

ν + twν) · A(xν + twν)− (xν + twν) · b
= f (xν) + twν · (Axν − b) + 1

2 t2wν · Awν

= f (xν)− t |wν |2 + 1
2 t2wν · Awν .

The minimum for this quadratic functional is attained at

t =
|wν |2

wν · Awν
=
|rν |2

rν · Arν
.

We recover the Steepest Descent method for the positive
definite system Ax = b.
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NEWTON
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First approach: stationary points

For a convex function, any stationary point

∇f (x) = 0

is a global minimum. We then find roots of

F (x) = 0, F = ∇f : Rn → Rn.

Newton’s iteration for systems is defined as

xν+1 = xν −∇F (xν)−1F (xν),

where
∇F (x)ij =

∂Fi

∂xj

In our case
F = ∇f , ∇F = Hf .

FJS MATH 612 43 / 50



First approach: stationary points

The implementation form is

for ν ≥ 1
b = F (x)
A = ∇F (x)
Solve Aw = b
x = x − w
Stopping criterion

end

For stationary points, susbtitute F = ∇f , ∇F = Hf .
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Second approach: quadratic approximation

Given xν consider the quadratic Taylor approximation

q(x) = f (xν) +∇f (xν) · (x − xν) + 1
2(x − xν) · Hf (xν)(x − xν).

It attains its minimum at

x = xν − Hf (xν)−1∇f (xν).

We then move to the minimum for the quadratic approximation
and repeat the process. What we get is exactly Newton’s
method to find stationary points.
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Newton descent method

In both algorithms above, we found xν+1 = xν + wν , where

wν = −Hf (xν)−1∇f (xν).

Note that

wν · ∇f (xν) = −∇f (xν) · Hf (xν)−1∇f (xν) < 0,

so wν is a descent direction. Newton method for optimization
consists of combining the Newton choice of descent direction
with some kind of line search. Then the iteration is

xν+1 = xν + tνwν = xν − tνHf (xν)−1∇f (xν).
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Newton descent with backtracking line search

for ν ≥ 1
b = ∇f (x)
A = Hf (x)
w = A−1b
ϕ0 = f (x), ψ0 = w · b
τ = γ
ϕ1 = f (x + τw)
while ϕ1 > ϕ0 + τβψ0

τ = τγ
ϕ1 = f (x + τw)

end
x = x + τw
stopping criterion

end
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CONVERGENCE
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Strictly convex functions

Let f : Rn → R be:
strictly convex
with bounded level sets

{x ∈ Rn : f (x) ≤ α} bounded, for all α

We use a descent method with exact line search and:
steepest descent (assuming f ∈ C1)
Newton search (assuming f ∈ C2)
any choice of descent that is a continuous function of the
point

Then the descent method converges to the only global
minimum of f .
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Modifications of the theorem

If we relax strict convexity of f , Newton’s method is not
applicable, since it’s based on

∇f (xν) · wν = −∇f (xν) · Hf (xν)∇f (xν) < 0

which means (note how the Hessian has to be invertible)
that we need Hf (x) to be positive definite.
If we relax convexity, there’s still some kind of
convergence. With steepest descent or any other
continuous choice of descent direction, the sequence xν

might not converge, but it is bounded and all its
accumulation points are critical points.
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