MATH 612

Computational methods for equation solving and function minimization - Week \# 11

F.J.S.

Spring 2014 - University of Delaware

- Discuss any problems you couldn't solve from previous lectures
- We will cover Chapter 3 of the notes Fundamentals of Optimization by R.T. Rockafellar (University of Washington). I'll include a link in the website.
- You should spend some time reading Chapter 1 of those notes. It's full of interesting examples of optimization problems.
- Homework assignment \#4 is due next Monday

UNCONSTRAINED OPTIMIZATION

Notation and problems

Data: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (objective function). The feasible set for this problem is \mathbb{R}^{n} : all points of the space are considered as possible solutions.
Global minimization problem. Find a global minimum of f :

$$
x_{0} \in \mathbb{R}^{n} \quad f\left(x_{0}\right) \leq f(x) \quad \forall x \in \mathbb{R}^{n}
$$

Local minimization problem. Find $x_{0} \in \mathbb{R}^{n}$ such that there exists $\varepsilon>0$ satisfying

$$
f\left(x_{0}\right) \leq f(x) \quad \forall x \in \mathbb{R}^{n} \quad \text { s.t. } \quad\left|x-x_{0}\right|<\varepsilon
$$

The absolute value symbol will be used for the Euclidean norm.
Look at this formula

$$
\max f(x)=-\min (-f(x))
$$

Gradient and Hessian

Function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Its gradient vector is

$$
\nabla f(x)=\left[\frac{\partial f}{\partial x_{i}}\right]_{i=1}^{n} .
$$

In principle, we will take the gradient vector to be a column vector, so that we can dot it with a position vector x. However, in many cases points x are considered to be row vectors and then it's better to have gradients as row vectors as well. The Hessian matrix of f is the matrix of second derivatives

$$
(H f)(x)=H f(x)=\left[\frac{\partial^{2} f}{\partial x_{i} x_{j}}\right]_{i, j=1}^{n} .
$$

When $f \in \mathcal{C}^{2}$, the Hessian matrix is symmetric. Notation for the Hessian is not standard.

Small o notation and more

We say that $g(x)=o\left(|x|^{k}\right)$ when

$$
\lim _{|x| \rightarrow 0} \frac{|g(x)|}{|x|^{k}}=0
$$

For instance, the definition of differentiability can be written in this simple way: f is differentiable at x_{0} whenever there exists a vector, which we call $\nabla f\left(x_{0}\right)$ such that

$$
f(x)=f\left(x_{0}\right)+\nabla f\left(x_{0}\right) \cdot\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|\right) .
$$

When a function is of class \mathcal{C}^{2} in a neighborhood of x_{0} we can write

$$
\begin{aligned}
f(x)= & f\left(x_{0}\right)+\nabla f\left(x_{0}\right) \cdot\left(x-x_{0}\right) \\
& +\frac{1}{2}\left(x-x_{0}\right) \cdot H f\left(x_{0}\right)\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|^{2}\right)
\end{aligned}
$$

Descent directions

Let $x_{0} \in \mathbb{R}^{n}$ and take $w \in \mathbb{R}^{n}$ as a direction for movement.
Consider the function

$$
0 \leq t \longmapsto \varphi(t)=f\left(x_{0}+t w\right)
$$

Then $\varphi^{\prime}(t)=\nabla f\left(x_{0}+t w\right) \cdot w$, and

$$
\varphi(t)=\varphi(0)+t \varphi^{\prime}(0)+o(|t|)=f\left(x_{0}\right)+t \nabla f\left(x_{0}\right) \cdot w+o(|t|)
$$

Then w is a descent direction when there exists an $\varepsilon>0$ such that

$$
\varphi(t)<\varphi(0) \quad t \in(0, \varepsilon) \quad \Longleftrightarrow \quad \nabla f\left(x_{0}\right) \cdot w<0
$$

The last equivalence holds if $\nabla f\left(x_{0}\right) \neq 0$. The vector $w=-\nabla f\left(x_{0}\right)$ gives the direction of the steepest descent.

Stationary points

Let f have a local minimum at x_{0}. Then, for all w, $\varphi(t)=f\left(x_{0}+t w\right)$ has a local minimum at $t=0$ and

$$
\varphi^{\prime}(0)=\nabla f\left(x_{0}\right) \cdot w=0
$$

This implies that

$$
\nabla f\left(x_{0}\right)=0
$$

Points satisfying $\nabla f\left(x_{0}\right)=0$ are called stationary points. Minima are stationary points, but so are maxima, and other possible points.

The sign of the Hessian at minima

Let $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ and let x_{0} be a local minimum. Then
$\varphi(t)=\varphi(0)+\frac{1}{2} t^{2} \varphi^{\prime \prime}(0)+o\left(t^{2}\right)=f\left(x_{0}\right)+t^{2} \frac{1}{2} w \cdot H f\left(x_{0}\right) w+o\left(t^{2}\right)$
has a local minimum at $t=0$ for every w. This implies that

$$
w \cdot H f\left(x_{0}\right) w \geq 0 \quad \forall w \in \mathbb{R}^{n},
$$

that is $\operatorname{Hf}\left(x_{0}\right)$ is positive semidefinite.

Watch out for reciprocal statements: a proof

If f is $\mathcal{C}^{2}, \nabla f\left(x_{0}\right)=0$ and $\operatorname{Hf}\left(x_{0}\right)$ is positive definite (not semidefinite!), then f has a local minimum at x_{0}.
Proof. For $x \neq x_{0}$,

$$
f(x)=f\left(x_{0}\right)+\underbrace{\frac{1}{2}\left(x-x_{0}\right) \cdot H f\left(x_{0}\right)\left(x-x_{0}\right)}_{=g(x)>0}+\underbrace{h(x)}_{=o\left(\left|x-x_{0}\right|\right)^{2}}
$$

On the other hand,

$$
w \cdot H f\left(x_{0}\right) w \geq c|w|^{2} \quad \forall w \in \mathbb{R}^{n}, \quad \text { with } c>0
$$

(why?) and therefore we can find $\varepsilon>0$ such that

$$
|h(x)| \leq \frac{c}{4}\left|x-x_{0}\right|^{2}<|g(x)| \quad 0<\left|x-x_{0}\right|<\varepsilon
$$

which proves that x_{0} is a strict local minimum.

Watch out for reciprocal statements: counterexamples

If $\nabla f\left(x_{0}\right)=0$ and $\operatorname{Hf}\left(x_{0}\right)$ is positive semidefinite, things can go in several different ways. In one variable

$$
\psi(t)=t^{3}
$$

has $\psi^{\prime}(0)=0$ (stationary point), $\psi^{\prime \prime}(0)=0$ (positive semidefinite), but there's no local minimum at $t=0$. In two variables

$$
f(x, y)=x^{2}+y^{3}
$$

has $\nabla f(0,0)=0$,

$$
H f(0,0)=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \quad \text { positive semidefinite }
$$

and no local minimum at the origin.

SIMPLE FUNCTIONALS

Linear functionals

Doing unconstrained minimization for linear functionals

$$
f(x)=x \cdot b+c
$$

is not really an interesting problem. This is why:

$$
\nabla f(x)=b, \quad H f(x)=0
$$

Only constant functionals have minima, but all points are minima in that case. Note, however, that we will deal with linear functionals for constrained optimization problems.

Quadratic functionals

Let A be a symmetric matrix, $b \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. We then define

$$
f(x)=\frac{1}{2} x \cdot A x-x \cdot b+c
$$

and compute

$$
\nabla f(x)=A x-b, \quad H f=A
$$

- Stationary points are solutions to $A x=b$.
- Local minima exist only when A is positive semidefinite.
- If A is positive definite, then there is only one stationary point, which is a global minimum. (Proof in the next slide.)

Quadratic functionals (2)

If $A x_{0}=b$ and A is positive definite, then

$$
f\left(x_{0}\right)=f\left(x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right) \cdot A\left(x-x_{0}\right)>f\left(x_{0}\right), \quad x \neq x_{0}
$$

because there's no remainder in Taylor's formula of order two. What happens when A is positive semidefinite? On of these two possibilities:

- There are no critical points ($A x=b$ is not solvable). We can (how?) then find x_{*} such that $A x_{*}=0$ and $x_{*} \cdot b>0$. Using vectors $t x_{*}$ for $t \rightarrow \infty$, we can see that f is unbounded below
- There is a subspace of global minima (all critical points = all solutions to $A x=b$).

A control-style quadratic minimization problem

For a positive semidefinite matrix W, an invertible matrix C, and suitable matrices and vectors D, b and b, we minimize the functional:

$$
f(u)=\frac{1}{2} x \cdot W x-x \cdot b+|u|^{2}, \quad \text { where } \quad C x=D u+d
$$

As an exercise, write this functional as a functional in the variable u alone (in the jargon of control theory, x is a state variable) and find the gradient and Hessian of f.

CONVEXITY

Convex functions (functionals)

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex when

$$
\begin{aligned}
f\left((1-\tau) x_{0}+\tau x_{1}\right) \leq & (1-\tau) f\left(x_{0}\right)+\tau f\left(x_{1}\right) \\
& \forall \tau \in(0,1), \quad \forall x_{0}, x_{1} \in \mathbb{R}^{n} .
\end{aligned}
$$

It is scrictly convex when

$$
\begin{aligned}
& f\left((1-\tau) x_{0}+\tau x_{1}\right)<(1-\tau) f\left(x_{0}\right)+\tau f\left(x_{1}\right) \\
& \forall \tau \in(0,1), \quad \forall x_{0} \neq x_{1} \in \mathbb{R}^{n} .
\end{aligned}
$$

A function f is concave when $-f$ is convex.

Confusing? Easy to remember

- In undergraduate textbooks, convex is said concave up, and concave is said concave down.
- Grown-ups (mathematicians, scientists, engineers) always use convex with this precise meaning. There's no ambiguity. Everybody uses the same convention.
- x^{2} is convex. Repeat yourself this many times.

Line/segment convexity

Take $x_{0} \neq x_{1}$ and the segment

$$
[0,1] \ni \tau \longmapsto x(\tau)=(1-\tau) x_{0}+\tau x_{1} .
$$

If the function f is convex, then the one dimensional function

$$
\varphi(t)=f(x(t))
$$

is also convex:
$\varphi(t)=\varphi((1-t) 0+t 1) \leq(1-t) \varphi(0)+t \varphi(1)=(1-t) f\left(x_{0}\right)+t f\left(x_{1}\right)$.
This segment-convexity is equivalent to the general concept of convexity. In other words, a function is convex if and only if it is convex by segments for all segments.

Jensen's inequality

A function f is convex if and only if for all $k \geq 1, x_{0}, \ldots, x_{k} \in \mathbb{R}^{n}$, and $\tau_{0}+\ldots+\tau_{k}=1, \tau_{j} \geq 0$,

$$
f\left(\tau_{0} x_{0}+\tau_{1} x_{1}+\ldots+\tau_{k} x_{k}\right) \leq \tau_{0} f\left(x_{0}\right)+\tau_{1} f\left(x_{1}\right)+\ldots+\tau_{k} f\left(x_{k}\right)
$$

The expression

$$
\sum_{j=0}^{k} \tau_{j} x_{j} \quad \text { where } \quad \tau_{j} \geq 0, \forall j \quad \sum_{j=0}^{k} \tau_{j}=1
$$

is called a convex combination of the points x_{0}, \ldots, x_{k}. The set of all convex combinations of the points x_{0}, \ldots, x_{k} is called the convex hull of the points x_{0}, \ldots, x_{k}.

Jensen's inequality: proof by induction

The case $k=1$ is just the definition with $\tau_{0}=1-\tau$ and $\tau_{1}=\tau$.
For a given k

$$
\begin{aligned}
f\left(\sum_{j=0}^{k} \tau_{j} x_{j}\right) & =f\left(\tau_{0} x_{0}+\left(1-\tau_{0}\right)\left(\sum_{j=1}^{k} \frac{\tau_{j}}{1-\tau_{0}} x_{j}\right)\right) \\
& \leq \tau_{0} f\left(x_{0}\right)+\left(1-\tau_{0}\right) f\left(\sum_{j=1}^{k} \frac{\tau_{j}}{1-\tau_{0}} x_{j}\right) \\
& \leq \tau_{0} f\left(x_{0}\right)+\left(1-\tau_{0}\right) \sum_{j=1}^{k} \frac{\tau_{j}}{1-\tau_{0}} f\left(x_{j}\right) \\
& =\sum_{j=0}^{k} \tau_{j} f\left(x_{j}\right) .
\end{aligned}
$$

(Note that if $\tau_{0}=1$ there's nothing to prove.)

An argument

Assume that f is convex. If there exist x_{0} and $\varepsilon>0$ such that

$$
f\left(x_{0}\right) \leq f\left(x_{0}+\varepsilon w\right) \quad \forall w \in \mathbb{R}^{n} \text { with }|w|=1
$$

then

$$
\begin{aligned}
f\left(x_{0}\right) & \leq f\left(x_{0}+\varepsilon w\right)=f\left(\frac{\varepsilon}{t+\varepsilon} x_{0}+\frac{t}{t+\varepsilon}\left(x_{0}+(t+\varepsilon) w\right)\right) \\
& \left.\leq \frac{\varepsilon}{t+\varepsilon} f\left(x_{0}\right)+\frac{t}{t+\varepsilon} f\left(x_{0}+(t+\varepsilon) w\right)\right)
\end{aligned}
$$

and

$$
\frac{t}{t+\varepsilon} f\left(x_{0}\right)=\left(1-\frac{\varepsilon}{t+\varepsilon}\right) f\left(x_{0}\right) \leq \frac{t}{t+\varepsilon} f\left(x_{0}+(t+\varepsilon) w\right)
$$

which implies

$$
f\left(x_{0}\right) \leq f\left(x_{0}+t w\right) \quad \forall t \geq \varepsilon \quad \forall w \text { with }|w|=1
$$

A conclusion

The previous argument (and some minor additional work) shows that for a convex function, any local minimum is a global minimum.

This does not mean that convex functions have global minima. For instance

$$
e^{-x_{1}}+e^{-x_{2}}+\ldots+e^{-x_{n}}
$$

is strictly convex (why?) and does not have minimum value.

Another result

If x_{0}, \ldots, x_{k} are minima of a convex function

$$
f\left(x_{0}\right)=\ldots=f\left(x_{k}\right) \leq f(x) \quad \forall x \in \mathbb{R}^{n},
$$

then with for any convex combination

$$
c \leq f\left(\sum_{j=0}^{k} \tau_{j} x_{j}\right) \leq \sum_{j=0}^{k} \tau_{j} f\left(x_{j}\right)=c \sum_{j=0}^{k} \tau_{j}=c .
$$

Therefore the convex hull of a set of minima contains also minima.

Scrict convexity brings uniqueness

If $x_{0} \neq x_{1}$ are two global minima of a scritcly convex function

$$
c=f\left(x_{0}\right)=f\left(x_{1}\right) \leq f(x) \quad \forall x \in \mathbb{R}^{n}
$$

then

$$
f\left(\frac{1}{2} x_{0}+\frac{1}{2} x_{1}\right)<\frac{1}{2} f\left(x_{0}\right)+\frac{1}{2} f\left(x_{1}\right)=c
$$

which contradicts our hypothesis on having found two minima.
The strict inequality does not happen when $x_{0}=x_{1}$ and this shows uniqueness.

CONVEXITY OF SMOOTH FUNCTIONS

Convexity and tangent line

Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$. Then φ is convex if and only if

$$
\begin{equation*}
\varphi(t) \geq \underbrace{\varphi(\tau)+\varphi^{\prime}(\tau)(t-\tau)}_{\text {tangent line at } \tau} \quad \forall t, \tau \tag{1}
\end{equation*}
$$

Proof. Take $t>\tau$. Then

$$
\begin{aligned}
\varphi \text { is convex } & \Longleftrightarrow \varphi^{\prime} \text { is non-decreasing } \quad \text { (HW4) } \\
& \Longrightarrow \frac{\varphi(t)-\varphi(\tau)}{t-\tau} \geq \varphi^{\prime}(\tau) \quad(\mathrm{MVT})
\end{aligned}
$$

(A similar argument works for $\tau>t$.) Using (1) for the pairs (t, τ) and (τ, t) proves that

$$
\left(\varphi^{\prime}(\tau)-\varphi^{\prime}(t)\right)(t-\tau) \leq 0 \quad \forall t, \tau,
$$

that is, φ^{\prime} is non-decreasing.

Convexity and tangent plane

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at every point. Then f is convex if and only if

$$
\begin{equation*}
f(y) \geq \underbrace{f(x)+\nabla f(x) \cdot(y-x)}_{\text {tangent plane at } x} \quad \forall x, y \in \mathbb{R}^{n} . \tag{2}
\end{equation*}
$$

Proof. Let $\mathbb{R} \ni t \mapsto z(t)=x+t(y-x)$, and $\varphi(t)=f(z(t))$. If f is convex, then φ is convex and by the one-dimensional result

$$
\varphi(1) \geq \varphi(0)+\varphi^{\prime}(0) \quad \text { that is, (??). }
$$

If (??) holds, then
$\varphi(t)=f(z(t)) \geq f(z(\tau))+\nabla f(z(\tau)) \cdot \underbrace{(z(t)-z(\tau))}_{(t-\tau)(y-x)}=\varphi(\tau)+\varphi^{\prime}(\tau)(t-\tau)$
and φ is convex. Finally, line-convexity implies convexity.

Corollary: stationary points of convex functions

If f is convex and differentiable and x_{0} is a stationary point

$$
\nabla f\left(x_{0}\right)=0
$$

then x_{0} is a global minimum.
Proof. We know that

$$
f(x) \geq f\left(x_{0}\right)+\nabla f\left(x_{0}\right) \cdot\left(x-x_{0}\right)=f\left(x_{0}\right) \quad \forall x \in \mathbb{R}^{n},
$$

so this is the proof.
If f is strictly convex and differentiable, then there is at most one stationary point which will be the only global minimum.

Strict convexity

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at every point. Then f is convex if and only if

$$
f(y)>\underbrace{f(x)+\nabla f(x) \cdot(y-x)}_{\text {tangent plane at } x} \quad \forall x, y \in \mathbb{R}^{n}, \quad y \neq x
$$

The argument is very similar. Use first that for functions of one-variable, strict convexity of φ is equivalent to φ^{\prime} being increasing. Then use line parametrizations to go from n dimensions to one dimension.

Convexity and second derivative

Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable.

- φ is convex if and only if $\varphi^{\prime \prime}(t) \geq 0$ for all t. (Proof. φ is convex iff φ^{\prime} is non-decreasing!)
- If $\varphi^{\prime \prime}(t)>0$ for all t, then φ is convex. (Proof. φ^{\prime} is increasing!)
- The function $\varphi(t)=t^{4}$ is strictly convex, but $\varphi^{\prime}(0)=0$.

Example. $\exp (t)$ is strictly convex.

Convexity and Hessian

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice differentiable. Then f is convex if and only if

$$
H f(x) \text { is positive semidefinite } \quad \forall x .
$$

If $H f(x)$ is positive definite for all x, then f is strictly convex.
Proof. Take $z(t)=x+t(y-x)$ and $\varphi(t)=f(z(t))$. Then f is convex if and only if all the functions φ are convex (for arbitrary choice of x and y), if and only if

$$
\varphi^{\prime \prime}(\tau)=(y-x) \cdot \operatorname{Hf}(x)(y-x) \geq 0 \quad \forall x, y .
$$

The strictly convex case is similar.
Example and counter-example. The function $\exp (b \cdot x)$, with $b_{i} \neq 0$ for all i is strictly convex. The function $x_{1}^{4}+\ldots+x_{n}^{4}$ is strictly convex but has vanishing Hessian at the origin.

DESCENT METHODS

A problem and two ideas

Problem. Find the unconstrained minimum of a (convex) function f.
Goal of the method. Produce a sequence of points reducing the value of f :

$$
f\left(x^{\nu}\right)>f\left(x^{\nu+1}\right) \quad \forall \nu .
$$

Find a descent direction. For each ν, find a descent direction w^{ν}, that is,

$$
f\left(x^{\nu}+t w^{\nu}\right)<f\left(x^{\nu}\right) \quad \text { for } 0>t>\varepsilon .
$$

If f is differentiable: $\nabla f\left(x^{\nu}\right) \cdot w^{\nu}<0$. The steepest descent method consists of taking $w^{\nu}=-\nabla f\left(x^{\nu}\right)$. Do a line search. Find a value $t^{\nu}>0$ ensuring that

$$
f\left(x^{\nu}+t^{\nu} w^{\nu}\right)<f\left(x^{\nu}\right)
$$

and define $x^{\nu+1}=x^{\nu}+t^{\nu} w^{\nu}$.

Exact line search

We have the point x^{ν} and the descent direction w^{ν}. We then define the function

$$
[0, \infty) \ni t \longmapsto \varphi(t)=\varphi^{\nu}(t)=f\left(x^{\nu}+t w^{\nu}\right)
$$

This function decreases near 0 . If f is convex, this function is convex and: (a) either has a minimum at some $t>0$, (b) or is unbounded below (so is the original function); (c) or decreases to a limit as $t \rightarrow \infty$.
We assume that we are in the (a) case. We then solve the one-dimensional minimization problem:

$$
\text { find } t^{\nu}>0 \text { such that } \varphi\left(t^{\nu}\right) \leq \varphi(t) \quad \forall t \in[0, \infty)
$$

Exact line search (2)

If f is convex, so is $\varphi(t)=f\left(x^{\nu}+t w^{\nu}\right)$. If f is differentiable, we only need to look for a stationary point

$$
\varphi^{\prime}(t)=0 \quad \Longleftrightarrow \quad \nabla f\left(x^{\nu}+t w^{\nu}\right) \cdot w^{\nu}=0
$$

This is a non-linear equation of a single variable. It can be solved with Newton iterations:

$$
\tau_{k+1}=\tau_{k}-\frac{\varphi\left(\tau_{k}\right)}{\varphi^{\prime}\left(\tau_{k}\right)}
$$

at the cost of one evaluation of f and one of ∇f at each iteration.

If f is differentiable (actually convexity is enough but we won't say why), then

$$
\frac{1}{\tau}(\varphi(\tau)-\varphi(0)) \xrightarrow{\tau \rightarrow 0} \varphi^{\prime}(0)<\beta \varphi^{\prime}(0)<0
$$

for $0<\beta<1$ (chosen parameter). We then look for $0<\tau<1$ satisfying

$$
\varphi(\tau)-\varphi(0)<\tau \beta \varphi^{\prime}(0)<0
$$

The value τ is found by considering $\tau=\gamma^{k}$ as k grows, where $0<\beta<\gamma<1$ is another desing parameter.

Backtracking (2)

```
for }\nu\geq
    find a descent direction w
    \phi0}=f(x
    \psi
    \tau=\gamma
    \varphi}=f(x+\tauw
    while }\mp@subsup{\varphi}{1}{}\geq\mp@subsup{\varphi}{0}{}+\tau\beta\mp@subsup{\psi}{0}{
        \tau=\tau\gamma
        \varphi}=f(x+\tauw
    end
    x=x+\tauw
    stopping criterion
end
```


Steepest descent for quadratic functions

The objective function is

$$
f(x)=\frac{1}{2} x \cdot A x-x \cdot b
$$

where A is symmetric positive definite. We know that

$$
\nabla f(x)=A x-b
$$

At the iteration ν, we have x^{ν} and compute the descent direction

$$
w^{\nu}=-\nabla f\left(x^{\nu}\right)=b-A x^{\nu}=r^{\nu}
$$

Therefore, the descent direction is the residual.

Steepest descent for quadratic functions: line search

Follow me!

$$
\begin{aligned}
\varphi(t) & =f\left(x^{\nu}+t w^{\nu}\right) \\
& =\frac{1}{2}\left(x^{\nu}+t w^{\nu}\right) \cdot A\left(x^{\nu}+t w^{\nu}\right)-\left(x^{\nu}+t w^{\nu}\right) \cdot b \\
& =f\left(x^{\nu}\right)+t w^{\nu} \cdot\left(A x^{\nu}-b\right)+\frac{1}{2} t^{2} w^{\nu} \cdot A w^{\nu} \\
& =f\left(x^{\nu}\right)-t\left|w^{\nu}\right|^{2}+\frac{1}{2} t^{2} w^{\nu} \cdot A w^{\nu} .
\end{aligned}
$$

The minimum for this quadratic functional is attained at

$$
t=\frac{\left|w^{\nu}\right|^{2}}{w^{\nu} \cdot A w^{\nu}}=\frac{\left|r^{\nu}\right|^{2}}{r^{\nu} \cdot A r^{\nu}} .
$$

We recover the Steepest Descent method for the positive definite system $A x=b$.

NEWTON

First approach: stationary points

For a convex function, any stationary point

$$
\nabla f(x)=0
$$

is a global minimum. We then find roots of

$$
F(x)=0, \quad F=\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Newton's iteration for systems is defined as

$$
x^{\nu+1}=x^{\nu}-\nabla F\left(x^{\nu}\right)^{-1} F\left(x^{\nu}\right)
$$

where

$$
\nabla F(x)_{i j}=\frac{\partial F_{i}}{\partial x_{j}}
$$

In our case

$$
F=\nabla f, \quad \nabla F=H f
$$

First approach: stationary points

The implementation form is

$$
\begin{aligned}
& \text { for } \nu \geq 1 \\
& b=F(x) \\
& A=\nabla F(x) \\
& \text { Solve } A w=b \\
& x=X-w \\
& \text { Stopping criterion } \\
& \text { end }
\end{aligned}
$$

For stationary points, susbtitute $F=\nabla f, \nabla F=H f$.

Given x^{ν} consider the quadratic Taylor approximation

$$
q(x)=f\left(x^{\nu}\right)+\nabla f\left(x^{\nu}\right) \cdot\left(x-x^{\nu}\right)+\frac{1}{2}\left(x-x^{\nu}\right) \cdot H f\left(x^{\nu}\right)\left(x-x^{\nu}\right)
$$

It attains its minimum at

$$
x=x^{\nu}-H f\left(x^{\nu}\right)^{-1} \nabla f\left(x^{\nu}\right)
$$

We then move to the minimum for the quadratic approximation and repeat the process. What we get is exactly Newton's method to find stationary points.

Newton descent method

In both algorithms above, we found $x^{\nu+1}=x^{\nu}+w^{\nu}$, where

$$
w^{\nu}=-H f\left(x^{\nu}\right)^{-1} \nabla f\left(x^{\nu}\right)
$$

Note that

$$
w^{\nu} \cdot \nabla f\left(x^{\nu}\right)=-\nabla f\left(x^{\nu}\right) \cdot H f\left(x^{\nu}\right)^{-1} \nabla f\left(x^{\nu}\right)<0
$$

so w^{ν} is a descent direction. Newton method for optimization consists of combining the Newton choice of descent direction with some kind of line search. Then the iteration is

$$
x^{\nu+1}=x^{\nu}+t^{\nu} w^{\nu}=x^{\nu}-t^{\nu} H f\left(x^{\nu}\right)^{-1} \nabla f\left(x^{\nu}\right)
$$

Newton descent with backtracking line search

$$
\begin{aligned}
& \text { for } \nu \geq 1 \\
& \quad b=\nabla f(x) \\
& A=H f(x) \\
& w=A^{-1} b \\
& \varphi_{0}=f(x), \psi_{0}=w \cdot b \\
& \tau=\gamma \\
& \varphi_{1}=f(x+\tau w) \\
& \text { while } \varphi_{1}>\varphi_{0}+\tau \beta \psi_{0} \\
& \tau=\tau \gamma \\
& \varphi_{1}=f(x+\tau w) \\
& \text { end } \\
& \quad x=x+\tau w \\
& \text { stopping criterion } \\
& \text { end }
\end{aligned}
$$

CONVERGENCE

Strictly convex functions

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be:

- strictly convex
- with bounded level sets

$$
\left\{x \in \mathbb{R}^{n}: f(x) \leq \alpha\right\} \text { bounded, for all } \alpha
$$

We use a descent method with exact line search and:

- steepest descent (assuming $f \in \mathcal{C}^{1}$)
- Newton search (assuming $f \in \mathcal{C}^{2}$)
- any choice of descent that is a continuous function of the point
Then the descent method converges to the only global minimum of f.

Modifications of the theorem

- If we relax strict convexity of f, Newton's method is not applicable, since it's based on

$$
\nabla f\left(x^{\nu}\right) \cdot w^{\nu}=-\nabla f\left(x^{\nu}\right) \cdot H f\left(x^{\nu}\right) \nabla f\left(x^{\nu}\right)<0
$$

which means (note how the Hessian has to be invertible) that we need $H f(x)$ to be positive definite.

- If we relax convexity, there's still some kind of convergence. With steepest descent or any other continuous choice of descent direction, the sequence x^{ν} might not converge, but it is bounded and all its accumulation points are critical points.

